1. 伺服系统减速机对系统性能影响
单位时间内的脉冲数就是脉冲频率,伺服电机是根据上位机的脉冲数转的,首先你要知道伺服电机多少脉冲转一圈,然后再算下转一圈负载走了多少位移,加了1:10减速机以后单位时间内想要实现同样的位移脉冲数就要加大十倍,时间不变,脉冲频率肯定也变大了十倍,如果上位机满足不了这么大的脉冲频率可以用电子齿轮。
2. 伺服系统减速机对系统性能影响大吗
减速机只是个传动装置!作用是降低速度的同时增加扭矩!
比如安川电机400W,额定转速3000转,额定扭力是1.27Nm,减速机的减速比是1:10,那么整体输出扭矩就是12.7Nm!输出转速就是300转。也就是说降低几倍的速度,就增加几倍的扭力!我是做安川电机,和PHT行星减速机的,希望能帮到你!还有你也太抠点了,一分都不给!
3. 伺服减速机减速比
1)把pr008参数设置为0,以便使驱动自带的电子齿轮比设置生效;
2)pr009设为1048576;
3)pr10设为6660;备注:以上设置为电机每6660个脉冲转一圈;66.6/6660=0.01,1毫米对应100个脉冲;pr10的值你可以自己定义,能算出整数就行
4. 伺服减速机的作用
伺服电机并不是必须带减速机。
加不加减速机是由客户使用的工况所决定的。在工业自动化应用的过程中,许多行业都会用到,低速大扭矩精准操控,这种场合一般都会用到减速机,在高速小扭矩的工作下,一般都会用上减速机。
伺服电机是一个动力装置,一般的伺服电机都是永磁电机,响应快、控制精准。伺服减速机多数是安装在步进电机和伺服电机上,用来降低转速,提升扭矩,匹配惯量,由具体力矩和功率的转换方式如下:
力矩*角速度(弧度/秒)= 功率(W),而角速度=线速度/半径,可以看出,输出功率一定的条件下,速度越小,输出转矩越大,所以其有降低速度,提升转矩的作用。
5. 伺服减速比
一、脉冲当量,就是伺服电机每输入一个驱动脉冲,转过一个步距,工件平移的距离~
所以脉冲当量可计算如下:
1:减速比=伺服的转数/丝杠的转数;
2:工件平移的距离=螺距×丝杠的转数;
3;工件平移的距离=螺距×伺服的转数/减速比
4:伺服的转数=伺服输入的驱动脉冲/伺服每转一周的驱动脉冲数;
伺服输入的驱动脉冲=螺距/(减速比×伺服每转一周的驱动脉冲数); 5:工件平移的距离/
6:脉冲当量= 螺距/(减速比×伺服每转一周的驱动脉冲数) ,,,,驱动脉冲数是多少,
1:驱动脉冲数=伺服转数×伺服每转一周的驱动脉冲数
2:电子齿轮比=驱动脉冲数/控制脉冲/;
3:驱动脉冲数=控制脉冲×电子齿轮比;
4:伺服每转一周的驱动脉冲数=伺服每转一周控制脉冲数×电子齿轮比;
,,,,,脉冲当量=工件平移的距离/伺服输入的驱动脉冲
=螺距/(减速比×伺服每转一周控制脉冲数×电子齿轮比)“脉冲当量=螺距/
(传动比 X 编码器解析度 X 电子齿轮比”是错误的:
1:脉冲当量与编码器的解析度无关;
2:脉冲当量只与丝杠的螺距、减速比、电子齿轮比、伺服每转一周控制脉冲数有关~
3:举例说,伺服的极对数不同,“当量”会不同的~
4:按照笨鸟的说法,当量与伺服没有关系的~
5:编码器的脉冲对控制脉冲只是个反馈的关系,与“当量”没有关系~
编码盘的分辨率就是电机转一圈的脉冲数
速度计算:
每圈/min=脉冲频率*60/一圈的脉冲
二、功率计算
P=PI*M*n/30
P:电机功率 PI:3.1415926 M:电机扭矩 n:电机转速
三、伺服超速报警故障解决方法:
? 伺服Run信号一接入就发生;
检查伺服电机动力电缆和编码器电缆的配线是否正确,有无破损。
? 输入脉冲指令后在高速运行时发生:
a(控制器输出的脉冲频率过大,修改程序调整脉冲输出的频率;
b(电子齿轮比设置过大;
c(伺服增益设置太大,尝试重新用手动或自动方式调整伺服增益。
四、伺服电机扭矩计算公式
T=F*R*(减速比)
T=扭矩、 F=带动的物体、R=物体的半径(m)
旋转物体的扭矩计算
T=9550p/n
1/2页
伴随的年纪的增长,在人际关系也该变得成熟,比如我没有爽快的答应你时,就是拒绝的意
思。我给你留了面子,你也该长点脑子。
再见时,思绪如潮涌般袭来,指尖深深扎进手心,心止不住的疼、止不住的颤抖。
6. 伺服系统减速机对系统性能影响有哪些
那肯定因素比较多了,主要分为内部因素和外部因素 内部因素主要指a、机床本身的精度,包括床身材料强度、丝杠和螺母配合精度、伺服电机的精度、检测装置的精度以及安装时候的有没有安置水平等等;b、工件装夹的方式,也会影响加工精度;c、加工路径对工件的变形,精度都有很大的影响;d、操作工人的技能水平。 外部因素主要是a、机床所处的环境的温度、气压等等;b、附近有没有大型机械运作从而引起大的震动。 以上纯属个人观点……