1. 交流伺服系统包括哪些部分
(1)按被控量参数特性分类。
(2)按驱动元件的类型分类。
伺服控制系统按所用控制元件的类型可分为机电伺服系统、液压伺服系统(液压控制系统) 和气动伺服系统。
(3)按控制原理分类。
伺服系统可分为开环控 制伺服系统、闭环控制伺服系统和半闭环控制伺服系统。
伺服驱动系统按其用途和功能分为进给驱动系统和主轴驱动系统;按其控制原理和有无位置检测反馈环节分为开环系统和闭环系统;按驱动执行元件的动作原理分为电液伺服驱动系统和伺服驱动系统。电气伺服驱动系统又分为直流伺服驱动系统和交流伺服驱动系统。
2. 伺服系统的组成包括哪些部分
数控机床中按伺服系统可以分为开环控制、半闭环控制和闭环控制三种。
开环控制:不带位置反馈装置的控制方式。加工精度一般在0.02-0.05mm精度左右。
半闭环控制:在开环控制伺服电动机轴上装有角位移检测装置,通过检测伺服电动机的转角间接地检测出运动部件的位移反馈给数控装置的比较器,与输入的指令进行比较,用差值控制运动部件。加工精度一般在0.01-0.02mm精度左右。
闭环控制:在机床的最终的运动部件的相应位置直接直线或回转式检测装置,将直接测量到的位移或角位移值反馈到数控装置的比较器中与输入指令移量进行比较,用差值控制运动部件,使运动部件严格按实际需要的位移量运动。加工精度一般在0.002-0.01mm精度左右。
扩展资料
伺服系统为数控机床的重要组成部分,用于实现数控机床的进给伺服控制和主轴伺服控制。伺服系统的作用是把接受来自数控装置的指令信息,经功率放大、整形处理后,转换成机床执行部件的直线位移或角位移运动。
由于伺服系统为数控机床的最后环节,其性能将直接影响数控机床的精度和速度等技术指标,因此,对数控机床的伺服驱动装置,要求具有良好的快速反应性能,准确而灵敏地跟踪数控装置发出的数字指令信号,并能忠实地执行来自数控装置的指令,提高系统的动态跟随特性和静态跟踪精度。
伺服系统包括驱动装置和执行机构两大部分。驱动装置由主轴驱动单元、进给驱动单元和主轴伺服电动机、进给伺服电动机组成。步进电动机、直流伺服电动机和交流伺服电动机是常用的驱动装置。
测量元件将数控机床各坐标轴的实际位移值检测出来并经反馈系统输入到机床的数控装置中,数控装置对反馈回来的实际位移值与指令值进行比较,并向伺服系统输出达到设定值所需的位移量指令。
3. 交流伺服系统的组成部分
模拟式、混合式、数字式。模拟式和混合式的输入部分是模拟输入,区别在于混合式伺服系统的输入经过数字偏差器后进入模拟调节器。这三种方式的伺服系统都有位置反馈和速度反馈。
目前的伺服驱动技术是数控技术的重要组成部分。与数控装置相配合,伺服系统的静态和动态特性直接影响机床的位移速度,定位精度和加工精度。现在,直流伺服系统被交流数字伺服系统所取代;伺服电机的位置,速度及电流环都实现了数字化;并采用了新的控制理论,实现了不受机械负荷变动影响的高速响应系统。
其主要新发展的技术有:
a.前馈控制技术。过去的伺服系统,是把检测器信号与位置指令的差值乘以位置环增益作为速度指令。这种控制方式总是存在着跟踪滞后误差,这使得在加工拐角及圆弧时加工精度恶化。所谓前馈控制,就是在原来的控制系统上加上速度指令的控制方式,这样使伺服系统的跟踪滞后误差大大减小。
b.机械静止摩擦的非线性控制技术。对于一些具有较大静止摩擦的数控机床,新型数字伺服系统具有补偿机床驱动系统静摩擦的非线性控制功能。
c.伺服系统的位置环和速度环(包括电流环)均采用软件控制,如数字调解和矢量控制等。为适应不同类型的机床,不同精度和不同速度要术,预先调整加、减速性能。
d.采用高分辨的位置检测装置。如高分辨率的脉冲编码器,内有微处理器组成的细分电路,使得分辨率大大提高,增量位置检测为10000 p/r(脉冲数/每转)以上;绝对位置检测为1000000 p/r以上。
e. 补偿技术得到了发展和应用。现代数控系统都具有补偿功能,可以对伺服系统进行多种补偿,如丝杠螺距误差补偿,齿侧间隙补偿、轴向运动误差补偿、空间误差补偿和热变形补偿等。
另外,伺服电机和步进电机在数控系统中都有应用,这里介绍一下二者的区别:
步进电机是一种离散运动的装置,它和现代数字控制技术有着本质的联系。目前国内的数字控制系统中,步进电机的应用十分广泛。随着全数字式交流伺服系统的出现,交流伺服电机也越来越多地应用于数字控制系统中,特别在运动控制系统中大多采用步进电机或全数字式交流伺服电机作为执行电动机。虽然在控制方式上两者相似(脉冲串和方向信号),但在使用性能和应用场合上存在着较大的差异:
1.控制精度不同:两相混合式步进电机步距角一般为3.6°、1.8°,五相混合式步进电机步距角一般为0.72°、0.36°。也有一些高性能的步进电机步距角更小。如四通公司生产的一种用于慢走丝机床的步进电机,其步距角为0.09°;德国百格拉公司(BERGER LAHR)生产的三相混合式步进电机其步距角可通过拨码开关设置为1.8°、0.9°、0.72°、0.36°、0.18°、0.09°、0.072°、0.036°,兼容了两相和五相混合式步进电机的步距角。而交流伺服电机的控制精度由电机轴后端的旋转编码器保证,以松下全数字式交流伺服电机为例,对于带标准2500线编码器的电机而言,由于驱动器内部采用了四倍频技术,其脉冲当量为360°/10000=0.036°。对于带17位编码器的电机而言,驱动器每接收217=131072个脉冲电机转一圈,即其脉冲当量为 360°/131072=9.89秒。是步距角为1.8°的步进电机的脉冲当量的1/655。
2.低频特性不同:步进电机在低速时易出现低频振动现象,振动频率与负载情况和驱动器性能有 关,一般认为振动频率为电机空载起跳频率的一半。这种由步进电机的工作原理所决定的低频振动现象对于机器的正常运转非常不利。当步进电机工作在低速时,一般应采用阻尼技术来克服低频振动现象,比如在电机上加阻尼器,或驱动器上采用细分技术等。而交流伺服电机运转非常平稳,即使在低速时也不会出现振动现象。交流伺服系统具有共振抑制功能,可涵盖机械的刚性不足,并且系统内部具有频率解析机能(FFT),可检测出机械的共振点,便于系统调整。
3.矩频特性不同:步进电机的输出力矩随转速升高而下降,且在较高转速时会急剧下降,所以其最高工作转速一般在300~600RPM。交流伺服电机为恒力矩输出,即在其额定转速(一般为2000RPM或3000RPM)以内,都能输出额定转矩,在额定转速以上为恒功率输出。
4.过载能力不同:步进电机一般不具有过载能力,而交流伺服电机具有较强的过载能力。以松下交流伺服系统为例,它具有速度过载和转矩过载能力。其最大转矩为额定转矩的三倍,可用于克服惯性负载在启动瞬间的惯性力矩。步进电机因为没有这种过载能力,在选型时为了克服这种惯性力矩,往往需要选取较大转矩的电机,而机器在正常工作期间又不需要那么大的转矩,便出现了 力矩浪费的现象。
5.运行性能不同:步进电机的控制为开环控制,启动频率过高或负载过大易出现丢步或堵转的现象,停止时转速过高易出现过冲的现象,所以为保证其控制精度,应处理好升、降速问题。交流伺服驱动系统为闭环控制,驱动器可直接对电机编码器反馈信号进行采样,内部构成位置环和速度环,一般不会出现步进电机的丢步或过冲的现象,控制性能更为可靠。
6.速度响应性能不同:步进电机从静止加速到工作转速(一般为每分钟几百转)需要200~400毫秒。交流伺服系统的加速性能较好,以松下MSMA 400W交流伺服电机为例,从静止加速到其额定转速3000RPM仅需几毫秒,可用于要求快速启停的控制场合。
4. 交流伺服系统主要由什么组成
三相交流伺服电动机并不是普通的异步电动机,恰恰是同步电动机。
其转子使用永磁材料制作而成,在定子中嵌入对称的三相绕组。所以,实际上它是一个永磁交流同步电动机。
控制的话需要使用伺服驱动器,驱动器根据要求改变电源频率,控制电动机速度,可以认为驱动器是一个变频器。并且电机通过自身的编码器接入驱动器,构成了闭环控制系统,因此可以实现高精度的调节。
5. 交流伺服系统包括哪些部分构成
1、位置控制模式:比如定长控制,根据脉冲数目来定角度或者长度;
2、速度控制模式:控制旋转速度,一般传动;
3、力矩控制模式:需要控制力的场合,比如张力控制,收卷控制等场合,通过电流控制来实现。
6. 一般来说伺服系统的基本组成
伺服电机主要由电机和驱动器组成,伺服电机的电机部分主要由定子绕组和永磁体转子构成,转子主要由硅钢片和永磁体及把永磁体固定在转子硅钢片上的辅件,如环氧树脂和玻璃纤维或其他不导磁材料,与普通电机不同之处就是转子上有永磁体