1. 直流伺服系统设计原理
(1) 液压伺服控制系统液压伺服控制系统是以电机提供动力基础,使用液压泵将机械能转化为压力,推动液压油。
(2) 交流伺服控制系统交流伺服控制系统包括基于异步电动机的交流伺服系统和基于同步电动机的交流伺服系统。
(3) 直流伺服控制系统交流伺服控制系统的工作原理是建立在电磁力定律基础上。
(4) 电液伺服控制系统它是一种由电信号处理装置和液压动力机构组成的反馈控制系统。
2. 直流伺服系统的特点
伺服电机内部的转子是
永磁铁
,驱动器控制的u/v/w
三相电
形成电磁场,转子在此磁场的作用下转动,同时电机自带的编码器反馈信号给驱动器,驱动器根据反馈值与
目标值
进行比较,调整转子转动的角度。伺服电机的精度决定于编码器的精度(
线数
)。
答:
伺服电动机
又称
执行电动机
,在
自动控制系统
中,用作
执行元件
,把所收到的电信号转换成电动机轴上的
角位移
或
角速度
输出。分为直流和
交流伺服电动机
两大类,其主要特点是,当信号电压为零时无自转现象,转速随着转矩的增加而匀速下降,
答:交流伺服要好一些,因为是正弦波控制,转矩脉动小。直流伺服是梯形波。但直流伺服比较简单,便宜。
永磁交流伺服电动机
20世纪80年代以来,随着集成电路、
电力电子技术
和交流可变速驱动技术的发展,永磁交流
伺服驱动技术
有了突出的发展,各国著名电气厂商相继推出各自的交流伺服电动机和
伺服驱动器
系列产品并不断完善和更新。交流
伺服系统
已成为当代高性能伺服系统的主要发展方向,使原来的直流伺服面临被淘汰的危机。90年代以后,世界各国已经商品化了的
交流伺服系统
是采用全
数字控制
的正弦波电动机伺服驱动。交流伺服驱动装置在传动领域的发展日新月异。永磁交流伺服电动机同
直流伺服电动机
比较,主要优点有:
⑴无
电刷
和
换向器
,因此工作可靠,对维护和保养要求低。
⑵
定子绕组
散热比较方便。
⑶
惯量
小,易于提高系统的
快速性
。
⑷适应于高速大力矩工作状态。
⑸同功率下有较小的体积和重量。
3. 直流伺服电路原理
伺服驱动器内部结构由电源电路、继电器板电路、主控板电路、驱动板电路及功率变换电路组成。电源电路作用,将外部输入的直流电转换为大小不同的直流电输出,为后续的继电器板、驱动板、功率变换电路提供直流电源。继电器板作用,提供直流电完成控制信号、检测信号传递。
伺服驱动器接线方法
1. 主回路接线:
1).R、S、T电源线的连接;
2)伺服驱动器U、V、W与伺服电动机电源线U、V、W之间的接线;
2. 控制电源类接线:
1). r 、t控制电源接线;
2)I/O口控制电源接线;
3. I/O接口与反馈检测类接线
4. 直流伺服电机结构和工作原理
工作原理:
伺服系统(servo mechanism)是使物体的位置、方位、状态等输出被控量能够跟随输入目标(或给定值)的任意变化的自动控制系统。
伺服主要靠脉冲来定位,基本上可以这样理解,伺服电机接收到1个脉冲,就会旋转1个脉冲对应的角度,从而实现位移。
因为,伺服电机本身具备发出脉冲的功能,所以伺服电机每旋转一个角度,都会发出对应数量的脉冲,这样,和伺服电机接受的脉冲形成了呼应,或者叫闭环。
如此一来,系统就会知道发了多少脉冲给伺服电机,同时又收了多少脉冲回来,这样,就能够很精确的控制电机的转动,从而实现精确的定位,可以达到0.001mm。
直流伺服电机分为有刷和无刷电机。有刷电机成本低,结构简单,启动转矩大,调速范围宽,控制容易,需要维护,但维护不方便(换碳刷),产生电磁干扰,对环境有要求。因此它可以用于对成本敏感的普通工业和民用场合。
扩展资料:
伺服电机(servo motor )是指在伺服系统中控制机械元件运转的发动机,是一种补助马达间接变速装置。
伺服电机可使控制速度,位置精度非常准确,可以将电压信号转化为转矩和转速以驱动控制对象。伺服电机转子转速受输入信号控制。
并能快速反应,在自动控制系统中,用作执行元件,且具有机电时间常数小、线性度高、始动电压等特性,可把所收到的电信号转换成电动机轴上的角位移或角速度输出。
分为直流和交流伺服电动机两大类,其主要特点是,当信号电压为零时无自转现象,转速随着转矩的增加而匀速下降。
参考资料:
5. 伺服系统原理与设计
伺服系统是使物体的位置、方位、状态等输出被控量能够跟随输入目标的任意变化的自动控制系统。伺服主要靠脉冲来定位,基本上可以这样理解,伺服电机接收到1个脉冲,就会旋转1个脉冲对应的角度,从而实现位移。
因为伺服电机本身具备发出脉冲的功能,所以伺服电机每旋转一个角度,都会发出对应数量的脉冲,和伺服电机接受的脉冲形成了呼应,如此一来,系统就会知道发了多少脉冲给伺服电机,同时又收了多少脉冲回来,这样就能够很精确的控制电机的转动,从而实现精确的定位。
6. 直流伺服系统工作原理
1、直流电动机的工作原理 一般了解
2、直流电动机的构造 分为两部分:定子与转子。记住定子与转子都是由那几部分构成的,注意:不要把换向极与换向器弄混淆了,记住他们两个的作用。 定子包括:主磁极,机座,换向极,电刷装置等。 转子包括:电枢铁芯,电枢绕组,换向器,轴和风扇等。
3、直流电动机的励磁方式 直流电动机的性能与它的励磁方式密切相关,通常直流电动机的励磁方式有4种:直流他励电动机、直流并励电动机、直流串励电动机和直流复励电动机。掌握4种方式各自的特点: 直流他励电动机: 励磁绕组与电枢没有电的联系,励磁电路是由另外直流电源供给的。因此励磁电流不受电枢端电压或电枢电流的影响。 直流并励电动机: 并励绕组两端电压就是电枢两端电压,但是励磁绕组用细导线绕成,其匝数很多,因此具有较大的电阻,使得通过他的励磁电流较小。 直流串励电动机:励磁绕组是和电枢串联的,所以这种电动机内磁场随着电枢电流的改变有显著的变化。为了使励磁绕组中不致引起大的损耗和电压降,励磁绕组的电阻越小越好,所以直流串励电动机通常用较粗的导线绕成,他的匝数较少。 直流复励电动机:电动机的磁通由两个绕组内的励磁电流产生。
4、直流电动机的技术数据 重点掌握额定效率与额定温升。 额定效率=输出功率/输入功率 额定温升指电动机的温度允许超过环境温度的最高允许值。铭牌上的温升是指电动机绕组的最高温升。
5、并励直流电动机的机械特性 掌握书上的例题。
6、并励直流电动机的起动、反转及调速 (1)起动和反转一般了解即可。 (2)调速:并励电动机有三种调速方法: 改变磁通。 改变电压 改变转子绕组回路电阻。 掌握它们各自的优缺点。 2. 控制电机 控制电机是指在自动控制系统中用作检测、比较、放大和执行等作用的电机。 (1)直流伺服电动机 掌握永磁直流伺服电动机的分类及特点;普通型转子永磁直流伺服电动机与小惯量型转子直流伺服电动机的区别。 永磁直流伺服电动机的工作原理及性能 理解工作原理,对性能要掌握 (2)交流伺服电动机 交流伺服电动机的结构及其工作原理一般了解,重点掌握其性能。 (3)步进电动机 掌握步进电动机的优点和主要性能指标,其他一般了解即可 一、直流发电机的工作原理 直流发电机的工作原理就是把电枢线圈中感应产生的交变电动势,靠换向器配合电刷的换向作用,使之从电刷端引出时变为直流电动势的原理。 电刷上不加直流电压,用原动机拖动电枢使之逆时针方向恒速转动,线圈两边就分别切割不同极性磁极下的磁力线,而在其中感应产生电动势,电动势方向按右手定则确定。这种电磁情况表示在图上。由于电枢连续地旋转,,因此,必须使载流导体在磁场中所受到线圈边ab和cd交替地切割N极和S极下的磁力线,虽然每个线圈边和整个线圈中的感应电动势的方向是交变的.线圈内的感应电动势是一种交变电动势,而在电刷A,B端的电动势却为直流电动势(说得确切一些,是一种方向不变的脉振电动势)。因为,电枢在转动过程中,无论电枢转到什么位置,由于换向器配合电刷的换向作用,电刷A通过换向片所引出的电动势始终是切割N极磁力线的线圈边中的电动势,因此,电刷A始终有正极性。同样道理,电刷B始终有负极性,所以电刷端能引出方向不变的但大小变化的脉振电动势。如每极下的线圈数增多,可使脉振程度减小,就可获得直流电动势。这就是直流发电机的工作原理
7. 直流伺服电机控制系统设计
你好,直流伺服电动机的结构与直流电动机基本相同。
只是为减小转动惯量,电机做得细长一些。所不同的是电枢电阻大,机械特性软、线性(电阻大,可弱磁起动、可直接起动)。