1. 机械臂位姿
机械臂是目前在机械人技术领域中得到最广泛实际应用的自动化机械装置,在工业制造、医学治疗、娱乐服务、军事以及太空探索等领域都能见到它的身影。
尽管它们的形态各有不同,但它们都有一个共同的特点,就是能够接受指令,精确地定位到三维(或二维)空间上的某一点进行作业。2. 机械臂位姿计算
计算方法:汽车吊理论吨位乘以3,再除以要吊的重量能得出距离,除以距离能得出重量,但是吊车的实际能力达不到计算出来的结果,还要把主臂的重量和吊钩的重量算上。
常见汽车吊的吨位即吊臂长:
(1)8吨的吊车:21米;
(2)16吨的吊车:31.5米;
(3)20吨的吊车:34米;
(4)25吨的吊车:38.5米到40.5米;
(5)36吨的吊车:38.5米;
(6)50吨的吊车:42米;
(7)65吨的吊车:61米。
3. 机械臂位姿调整机制
由于是转动固定角度,要最终姿态保持和预料的一样的话,那么机械臂的初始位置就很重要,要确保机械臂的初始位置已知与准确。比如,大臂的初始位置处于30度,最终姿态是要跑到60度的位置,即步进电机要增加30度,如果初始位置不是处于30度的位置,那么增加30度后最终位置就不会是60度。所以我们在机械臂上电初始化时,就要有个变量保存三个角度的值,以及一个初始位置的校准,确保实际机械臂的角度和变量中的角度值是对应与准确的。
知道上面的知识后,那么要控制机械臂就简单了。说白了就是控制X,Y,Z这3个电机走相应的角度。这里与原版的笛卡尔坐标系控制电机就有点不一样了,在笛卡尔坐标系下,每个电机都对应一个轴,要走到对应的坐标点,分别给对应轴对应的值就行了。比如坐标系的目标点在(0,0,10),那么只要Z轴电机移动10就行了。
4. 机械臂位姿控制
机械手是一种机械手臂,通常是可编程的,与人的手臂有相似的功能;手臂可以是机构的总和,也可以是更复杂的机器人的一部分。
这种机械手的连接通过关节连接,允许旋转运动(例如在关节式机器人中)或平移(线性)位移。
关节式机器人的工作原理其实非常类似于人类手臂的运动特性,人手是通过关节与骨骼以及肌肉的组合运动,才实现了听从大脑指挥并有条件反射等行为;而关节式机器人就是根据人类的这种特性,再通过人类智慧的“结晶”才成功研制的。
5. 机械臂位姿解算说法表达
四轴机械手和六轴关节式机械手。其中,四轴机械手是特别为高速取放作业而设计的,而六轴机械手则提供了更高的生产运动灵活性。
四轴机械手
小型装配机械手中,“四轴机械手”是指“选择性装配关节机器臂”,即四轴机械手的手臂部分可以在一个几何平面内自由移动。
机械手的前两个关节可以在水平面上左右自由旋转。第三个关节由一个称为羽毛(quill)的金属杆和夹持器组成。该金属杆可以在垂直平面内向上和向下移动或围绕其垂直轴旋转,但不能倾斜。
这种独特的设计使四轴机械手具有很强的刚性,从而使它们能够胜任高速和高重复性的工作。在包装应用中,四轴机械手擅长高速取放和其他材料处理任务。
六轴机械手
六轴机械手比四轴机械手多两个关节,因此有更多的“行动自由度”。
六轴机械手的第一个关节能像四轴机械手一样在水平面自由旋转,后两个关节能在垂直平面移动。此外,六轴机械手有一个“手臂”,两个“腕”关节,这让它具有人类的手臂和手腕类似的能力。
六轴机械手更多的关节意味着他们可以拿起水平面上任意朝向的部件,以特殊的角度放入包装产品里。他们还可以执行许多由熟练工人才能完成的操作。