返回首页

增强型声波传感器(列举10种超声波传感器的应用)

来源:www.haichao.net  时间:2022-12-31 13:54   点击:104  编辑:admin   手机版

1. 列举10种超声波传感器的应用

超声波传感技术应用在生产实践的不同方面,而医学应用是其超声波传感器最主要的应用之一,下面以医学为例子说明超声波传感技术的应用。超声波在医学上的应用主要是诊断疾病,它已经成为了临床医学中不可缺少的诊断方法。超声波诊断的优点是:对受检者无痛苦、无损害、方法简便、显像清晰、诊断的准确率高等。因而推广容易,受到医务工作者和患者的欢迎。超声波诊断可以基于不同的医学原理,我们来看看其中有代表性的一种所谓的A型方法。这个方法是利用超声波的反射。当超声波在人体组织中传播遇到两层声阻抗不同的介质界面时,在该界面就产生反射回声。每遇到一个反射面时,回声在示波器的屏幕上显示出来,而两个界面的阻抗差值也决定了回声的振幅的高低。

2. 列举10种超声波传感器的应用领域

①电容式物位传感器

电容式物位传感器有两个导体电极(通常把容器壁作为一个电极),由于电极间是气体、流体或固体而导致静电容的变化,因此可以敏感物位。

②浮子自动平衡式物位传感器

这种传感器通过检测平衡浮子浮力的变化来进行液位的测量。

③压力式物位传感器

一般采用半导体膜盒结构,利用金属片承受液体压力.通过封入的硅油导压传递给半导体应变片进行液位的测量。

④超声波物位传感器

它是一种非接触式的物位传感器,应用领域十分广泛。其工作原理是,工作时向液面或粉体表面发射一束超声波,被其反射后,传感器再接收此反射波。

⑤激光式物位传感器

它是一种性能优良的非接触式高精度物位传感器。

3. 典型的超声波传感器及其应用领域

一、优点:超声波具有频率高、波长短、绕射现象小,特别是方向性好、能够成为射线而定向传播等特点。

超声波对液体、固体的穿透本领很大,尤其是在阳光不透明的固体中,它可穿透几十米的深度。

超声波碰到杂质或分界面会产生显著反射形成反射成回波,碰到活动物体能产生多普勒效应。基于超声波特性研制的传感器称为“超声波传感器”,广泛应用在工业、国防、生物医学等方面。

二、 缺点:由于压电材料的居里点一般比较高,特别是诊断用超声波探头使用超声波传感器功率较小,工作温度比较低,可以长时间地工作而不失效。

医疗用的超声探头的温度比较高,需要单独的制冷设备。

灵敏度主要取决于制造晶片本身。机电耦合系数大,灵敏度高;反之,灵敏度低。1、现在的超声波传感器频率都相对固定,例如40KHz的传感器,只能用在38-42KHz上,其它频率的也类似,目前几乎见不到频域范围广的传感器,例如40KHz~500KHz这样的产品;

2、驱动电压较高,一般100Vp-p到1500Vp-p之间,在很多低压设备上需要脉冲变压器升压,但也会随之带来一些复杂问题。

如果有3~5V低压驱动(较大功率)的传感器就更好了;

3、灵敏度,最好能再高一些;

4. 常用的超声波传感器有哪几种形式

超声波传感器的种类有超声波距离传感器后超声波压力传感器等。

1、工作频率

工作频率就是压电晶片的共振频率。当加到它两端的交流电压的频率和晶片的共振频率相等时,输出的能量最大,灵敏度也最高。

2、工作温度

由于压电材料的居里点一般比较高,特别时诊断用超声波探头使用功率较小,所以工作温度比较低,可以长时间地工作而不产生失效。医疗用的超声探头的温度比较高,需要单独的制冷设备。

3、灵敏度

主要取决于制造晶片本身。机电耦合系数大,灵敏度高;反之,灵敏度低。

5. 超声传感器作用

常用的超声波传感器由压电晶片组成,既可以发射超声波,也可以接收超声波。小功率超声探头多作探测作用。它有许多不同的结构,可分直探头(纵波)、斜探头(横波)、表面波探头(表面波)、兰姆波探头(兰姆波)、双探头(一个探头发射、一个探头接收)等。

6. 什么是超声波传感器?

超声波传感器是利用超声波的特性研制而成的传感器。超声波是一种振动频率高于声波的机械波,由换能晶片在电压的激励下发生振动产生的,它具有频率高、波长短、绕射现象小,特别是方向性好、能够成为射线而定向传播等特点。

超声波对液体、固体的穿透本领很大,尤其是在阳光不透明的固体中,它可穿透几十米的深度。

超声波碰到杂质或分界面会产生显著反射形成反射成回波,碰到活动物体能产生多普勒效应。因此超声波检测广泛应用在工业、国防、生物医学等方面。

7. 列举10种超声波传感器的应用场景

超声波传感器的优点:

1.不受物体颜色或透明度的影响

超声波传感器将声音反射出物体,所以颜色或透明度不会影响传感器的读数。

2.能在黑暗环境下使用吗

与使用光线或摄像机的近距离传感器不同,黑暗的环境不会影响超声波传感器的探测能力。

3.不受灰尘、污物或高湿度环境影响

虽然许多传感器在这些环境下工作良好,但仍有一些传感器产生不正确的读数,特别是在极端条件下,即大量的灰尘或水积累。

4.在某些应用中具有较高的精度

超声波传感器在测量平行表面的厚度和距离时具有较高的精度。

5.穿透

高灵敏度和穿透力使超声波传感器更容易探测到外部,也能探测到深部物体。

6.抗环境干扰强:可在任何照明环境下使用。在室内、室外、复杂环境光等各种光照条件下,性能可靠。可对光、烟、尘、颜色、材料等进行非接触检测,所以在某些应用中超声波传感器比红外传感器更好,因为它们不受烟雾或黑物质的影响。

7.应用范围广:超声波传感器可用于水位检测、无人机应用、自动避障应用、距离检测应用等。

8.多用途:有无检测、电平检测、位置检测、距离检测等。可以满足大部分非接触检测的需要。

超声波传感器也有一些缺点:

1.不能在真空中工作

由于超声波传感器使用声音来工作,它们在真空中根本无法工作,因为没有空气来传播声音。

2. 不适合水下

3.软材料会影响传感精度

覆盖在非常柔软的织物上的物体会吸收更多的声波,使得传感器很难看到目标。

4. 5-10度或以上的温度变化会影响传感精度

然而,现在许多制造商的产品都提供温度补偿,这些传感器可以根据启动时或每次量程读数前的温度、电压等的任何变化进行校准。

5. 小物体很难反射声波

物体可能太小,不能反射足够的声波回传感器被探测到。

6. 有些特定的形状很难捕捉到反射波

某些物体的形状或位置会使声波在物体上反弹,但会偏离超声波传感器。在选择超声波传感器时,必须注意上述环境和应用场景;最后,总的来说,距离测量、密闭容器中的液位检测、障碍物检测、透明物体检测、汽车避撞系统、医学成像技术等领域都是使用超声波传感器拳头的场景。

8. 压电式超声波传感器应用

当电压作用于压电陶瓷时,压电陶瓷就会随电压和频率的变化产生机械变形。另一方面,当振动压电陶瓷时,则会产生一个电荷。利用这一原理,当给由两片压电陶瓷或一片压电陶瓷和一个金属片构成的振动器,所谓叫双压电晶片元件,施加一个电信号时,就会因弯曲振动发射出超声波。相反,当向双压电晶片元件施加超声振动时,就会产生一个电信号。基于以上作用,便可以将压电陶瓷用作超声波传感器。

将超声波传感器的一个复合式振动器被灵活地固定在底座上。该复合式振动器是谐振器以及由一个金属片和一个压电陶瓷片组成的双压电晶片元件振动器的一个结合体。谐振器呈喇叭形,目的是能有效地辐射由于振动而产生的超声波,并且可以有效地使超声波聚集在振动器的中央部位。

9. 常用的超声波传感器

反射型用于材料探伤、测厚等。反射类型的超声波传感器适用于材料探伤

超声波传感器则是利用声波介质将超声波信号转换成其他能量信号(通常是电信号)的传感器。超声波传感器主要采用直接反射式的检测模式,位于传感器前面的被检测物通过将发射的声波部分地发射回传感器的接收器,从而使传感器检测到被测物。还有部分超声波传感器采用对射式的检测模式。

顶一下
(0)
0%
踩一下
(0)
0%