1. 手持三维激光扫描仪器
觉得你的问题描述不是特别准确,以下解释希望对你有所帮助:
1.影像测量仪采用的方法是主动光或者被动光通过放大图像几十倍,进行的一种边缘拟合提取,所谓的三维也就是两维半,加了触笔或者探针检测Z向高度而已。一般的精度可高达微米级别(0.003mm~0.005mm)。典型的如美国的OGP、台湾智泰等;
2.三维激光扫描分为手持激光扫描仪、台式激光扫描仪,相比之下台式激光扫描仪精度稍高点,但测量物体一般体积受行程限制,不会太大,如国内的思锐;手持激光扫描仪比较轻便灵活,如加拿大的handsacn;但无论哪种激光扫描,实际使用中最终测量精度均在0.05mm-0.1mm,切测量数据噪声较大;
3.拍照式三维扫描仪,采用主动编码光栅投射物体表面,单相机或者双相机采集图像立体解算,一般单幅测量精度可高达0.008mm-0.03mm范围,测量对象可以是几个毫米到几十米,不受行程限制对于复杂曲面效率高,速度快,但不足之处如测头不够轻便、数据量大等。典型的此类设备如:德国GOM公司的ATOS,国内西安交大自主研发的XJTUOM、北京天远的OKIO系列三维扫描等。
2. 三维激光扫描测量技术
不是同一个东西。
激光雷达
工作在红外和可见光波段的雷达称为激光雷达。它由激光发射机、光学接收机、转台和信息处理系统等组成,激光器将电脉冲变成光脉冲发射出去,光接收机再把从目标反射回来的光脉冲还原成电脉冲,送到显示器。
激光雷达 LiDAR(Light Detection and Ranging),是激光探测及测距系统的简称。用激光器作为发射光源,采用光电探测技术手段的主动遥感设备。激光雷达是激光技术与现代光电探测技术结合的先进探测方式。由发射系统、接收系统、信息处理等部分组成。激光雷达是利用激光进行探测和测量,用途较广泛,多应用在地形图绘制,地形测,无人驾驶等。无人驾驶激光雷达这块国内已经能够量产的就是深圳速腾聚创科技有限公司。
三维激光扫描仪
三维扫描仪的一种,目前日益广泛应用的另一种三维扫描仪是拍照式三维扫描。
通过激光测距原理(包括脉冲激光和相位激光),瞬时测得空间三维坐标值的测量仪器,利用三维激光扫描技术获取的空间点云数据,可快速建立结构复杂、不规则的场景的三维可视化模型。
三维激光扫描仪主要应用在文物保护、城市建筑测量、地形测绘、采矿业、变形监测、工厂、大型结构、管道设计、飞机船舶制造等领域,在工业领域里三维激光扫描仪多用于三维建模,逆向工程,三维检测,产品设计。
相对于激光雷达,三维激光扫描仪多在工业领域。
3. 手持式三维激光扫描仪
三维激光扫描仪(3D laser scanner)是一种科学仪器,其能提供扫描物体表面的三维点云数据,因此可以用于获取高精度高分辨率的数字地形模型。
大空间三维激光扫描仪原理
大空间三维激光扫描仪原理原理比较简单,事实上和全息照片有着相同的原理,首先,需要将激光分成两束,一束光照射物件 ,一束直接照到底片上,使感光原件感光。从这是利用了从物体后部反射的激光束与物体前部反射的激光束所走过的距离不同,因此与直接照射的参考光束所形成的干涉条纹不同,而三维型激光扫描仪则记录了全部的条纹,也就记下了物体的立体形象,只要再用激光去照射全息图片,就可以显出物体的真面目。观看这样的图片时,只要改变观察的角度,就可以看到被前面物体挡住的部分,而且从这机关报照片中任意剪下一小块,都可从它看到物体的全貌,只是观察的窗口较窄,就好比从钥匙口看室内的情况一样。
大空间三维激光扫描仪优势
三维激光扫描仪按照扫描距离大体可分为大空间三维激光扫描仪、手持式三维扫描仪等。大空间三维激光扫描仪具有超长扫描距离的优势,能够扫描半径100米范围以上的空间,有一些大空间三维激光扫描仪能够扫描距离半径达到4000米。
大空间三维激光扫描仪应用领域
根据扫描距离的长短,大空间三维激光扫描仪可分泵用于建筑和土木工程、制造业和数字工厂、检测和逆向工程、文物遗产、范围最和事故调查、地形和矿产测量、建筑和正射影像测量、简历考古和文化遗产档案、电力、水利、城市三维建模、数字建模和车在激光扫描、成像系统、土木工程等领域。
大空间三维激光扫描仪推荐产品
FARO Focus 3D大空间三维激光扫描仪
FARO Focus X130 大空间三维激光扫描仪每秒可获取976000个点,最长扫描距离可达130余米,用户可以通过彩色接触屏简单直观的进行操作,该仪器还内置了同轴高分辨率相机,使彩色影像与点云的匹配无偏差。此外,该设备更加便携小巧,大大提升了对外业现场的便捷性。 FARO Focus X330是一款具有具有超长扫描距离的高速大空间三维激光扫描仪。Focus 3D X330将扫描范围扩展至全新的尺寸:能够在阳光直射下扫描最远距离为330米的物体。利用所集成式GPS接收器,这款激光扫描仪能够使每一次扫描与后处理相互关联,使其成为测量型应用的理想选择。凭借更高的精度和更大的范围,Focus 3D X330极大地简化了测量和后处理工作。三维扫描数据可被轻松的导入所有常用的事故重视、结构、土木工程、建筑、法医鉴定、工业制造和土地测量软件解决方案。因此、它能够快速、精确且可靠地完成距离尺寸、面积和体积的计算、分析和检测任务以及数字化建档工作。
RIEGL 大空间三维激光扫描仪
RIEGLVZ-400 三维激光扫描成像系统拥有RIEGL 独一无二的全波形回波技术(waveformdigitization)和实时全波形数字化处理和分析技术(on-line waveform analysis),每秒可发射高达300,000 点的纤细激光束,提供高达0.0005°的角分辨率。这种高精度高速激光测距及可同时探测到多重乃至无穷多重目标的细节信息技术优势,是传统单次回波反映单一物体技术所无法比拟的。除此以外,基于RIGEL 独特的多棱镜快速旋转扫描技术,它能够产生完全线性、均匀分布、单一方向、完全平行的扫描激光点云线。
4. 手持三维激光扫描仪价格
非常好用
在测量速度方面,三维扫描的测量效率可以达到CMM的数倍,这样可以提高检测频率,更快速的发现问题并分析产品的变化。经过我们的实际现场测试,扫描一辆完整的白车身只需要3个小时,同时由于使用的是手持三维扫描仪,所以可以完成车厢内部及底部等狭小空间的扫描工作。而且设备动态跟踪,可以无限扩展量程,因此不管是几厘米的零部件,还是几米的汽车,都能快速获取精确的三维数据。
5. 激光三维手持式扫描
一、方法如下1、首先在手机上APP应用市场搜索无线条码扫描枪。
2、在搜索结果中随便选一个,点击进入,然后选择下载,安装好。
3、在详情页找到“无线扫描器”的官网,下载对应的PC桌面软件,保存在电脑上。并安装好。
4、打开电脑上的程序,并且同时打开手机上的APP。
5、在桌面程序上点击启动,然后可以看到程序的连接已经启动,并且出现一个二维码6、用手机上 的APP扫描桌面程序的二维码,出现连接成功的提示,这个时候,只要把电脑的鼠标放在需要输入条形码内容的地方,用手机的扫描框扫描准备好的条形码就可以了。二、拓展资料关于条码扫描器1、条码扫描器,又称为条码阅读器、条码扫描枪、条形码扫描器、条形码扫描枪及条形码阅读器。
它是用于读取条码所包含信息的阅读设备,利用光学原理,把条形码的内容解码后通过数据线或者无线的方式传输到电脑或者别的设备。
广泛应用于超市、物流快递、图书馆等扫描商品、单据的条码。
2、条码扫描器通常也被人们称为条码扫描枪/阅读器,是用于读取条码所包含信息的设备,可分为一维、二维条码扫描器。条码扫描器的结构通常为以下几部分:光源、接收装置、光电转换部件、译码电路、计算机接口。
扫描枪的基本工作原理为:由光源发出的光线经过光学系统照射到条码符号上面。
被反射回来的光经过光学系统成像在光电转换器上,经译码器解释为计算机可以直接接受的数字信号。除一、二维条码扫描器分类。还可分类为:CCD、全角度激光和激光手持式条码扫描器。
3、分类:条码扫描器又叫条码阅读器、条码扫描枪、激光条码扫描器,广泛应用于超市、物流快递、图书馆等扫描商品、单据的条码。
激光扫描器扫描窗口透光镜采用特殊钢化材料,透光率畅快,景深远,整体塑料需做到无异味,耐高温,耐腐蚀,易擦洗,操作方便的特点。
6. 手持三维激光扫描仪器图片
手持激光扫描仪价格差别很大,国外的海克斯康 型创几十万 国产的思看科技十几万到二十几万。
7. 手持三维激光扫描仪器怎么用
手持式三维扫描仪,是一种可以用手持扫描来获取物体表面三维数据的便携式三维扫描仪。它是三维扫描仪中最常见的扫描仪。它用来侦测并分析现实世界中物体或环境的形状(几何构造)与外观数据(如颜色、表面反照率等性质),搜集到的数据常被用来进行三维重建计算,在虚拟世界中创建实际物体的数字模型。
华朗手持式三维扫描仪特点
:
操作简单
1.开箱即用,不用标定
2.按住电源键即可扫描物件
3.无需外接交流电源
4.软件系统操作简洁,界面直观明了,可用快捷键操作
小巧便携
1.外形小巧,重量轻(950g),携带方便例如:在飞机汽车内使用
2.无需外接电源,在室外或无电源的地方使用也很方便
扫描幅面
采用红色激光线技术,扫描幅面不限,视物件与机器距离而定
自动拼接
1.采用角点技术,全自动拼接方式(可对拼接做整体优化,减少全局误差)
2.对扫描复杂形状物体(如:汽车及内饰件等)尤为擅长,效率高、效果好、无盲区
精度高
1.提供高达0.05毫米的精度,
2.自带三维摄影测量系统(有效提高精度)
3.采用独创的角点技术,与业界常用的圆点标记贴相比,定位精度更高
我没有接触过华朗手持式三维扫描仪,我是在他们的网站上找的,不知道的对不对
8. 手持三维激光扫描仪扫描范围
三维激光扫描系统主要由三维激光扫描仪、计算机、电源供应系统、支架以及系统配套软件构成。三维激光扫描仪作为三维激光扫描系统的主要组成部分,是由激光射器、接收器、时间计数器、马达控制可旋转的滤光镜、控制电路板、微电脑、CCD机以及软件等组成,是测绘领域继GPS技术之后的一次技术革命。
它突破了传统的单点测量方法,具有高效率、高精度的独特优势。三维激光扫描技术能够提供扫描物体表面的三维点云数据,因此可以用于获取高精度高分辨率的数字地形模型。
9. 手持三维激光扫描仪器怎么确定坐标
1.三维坐标测量 将测站A坐标、仪器高和棱镜高输入全站仪中,后视B点并输入其坐标或后视方位角, 完成全站仪测站定向后,瞄准P点处的棱镜,经过观测觇牌精确定位,按测量键,仪器可 显示P点的三维坐标。
2.后方交会测量 将全站仪安置于待定上,观测两个或两个以上已知的角度和距离,并分别输入各已知 点的三维坐标和仪器高、棱镜高后,全站仪即可计算出测站点的三维坐标。
由于全站仪后 方交会既测角度,又测距离,多余观测数多,测量精度也就较高,也不存在位置上的特别 限制,因此,全站仪后方交会测量也可称作自由设站测量。
3.对边测量 在任意测站位置,分别瞄准两个目标并观测其角度和距离,选择对边测量模式,即可 计算出两个目标点间的平距、斜距和高差,还可根据需要计算出两个点间的坡度和方位角。
4.悬高测量 要测量不能设置棱镜的目标高度,可在目标的正下方或正上方安置棱镜,并输入棱镜 高。
瞄准棱镜并测量,再仰视或俯视瞄准被测目标,即可显示被测目标的高度。 5.坐标放样测量 安置全站仪于测站,将测站点、后视点和放样点的坐标输入全站仪中,置全站仪于放 样模式下,经过计算可将放样数据(距离和角度)显示在液晶屏上,照准棱镜后开始测量, 此时,可将实测距离与设计距离的差、实测量角度与设计角度的差、棱镜当前位置与放样 位置的坐标差显示出来,观测员依据这些差值指挥司尺员移动方向和距离,直到所有差值 为零,此时棱镜位置就是放样点位。 6.偏心测量 若测点不能安置棱镜或全站仪直接观测不到测点,可将棱镜安置在测点附近通视良好、 便于安置棱镜的地方,并构成等腰三角形。
瞄准偏心点处的棱镜并观测,再旋转全站仪瞄 准原先测点,全站仪即可显示出所测点位置。
10. 手持式三维激光扫描仪的应用
三维激光扫描技术又称为实景复制技术,利用激光测距原理,通过高速激光扫描测量方法,大面积、高分辨率地获取被测对象表面的高精度三维坐标数据以及大量空间点位信息,可以快速建立高精度(精度可达毫米级)、高分辨率的物体真实三维模型以及数字地形模型。是测绘领域继GPS技术之后的又一次技术革命。
三维激光扫描系统通过扫描目标物体,可获得海量的高精度空间三维点云数据,单点精度可达到毫米级,并且可具有真实色彩信息。获取的点云模型能充分体现出目标物体的三维特征信息。根据不同的需求,通过对点云数据的分析、处理,可以获得满足不同需求的丰富数据,从而在不同领域发挥不可比拟的重要作用。
相较于传统二维平面图纸的抽象表示,三维激光扫描技术,可以直观反映真实世界的本来面目,应用领域非常广泛,主要有文物古迹保护、建筑、规划、土木工程、工厂改造、室内设计、建筑监测、交通事故分析、法律证据收集、灾害评估、船舶设计、数字城市、军事等。
三维激光扫描系统根据其搭载的不同的平台分为:
(1) 固定式激光扫描系统。也称地面三维激光扫描仪,使用时在地面不同方位设置测站进行扫描。
(2) 车载激光扫描系统。以汽车作为平台,在连续移动过程中连续快速扫描。
(3) 机载激光扫描系统。以无人机或有人机作为平台,在空中对地面进行连续快速扫描。
(4) 手持型激光扫描系统。属于便携式激光扫描仪,使用简单、快捷、轻便。
(5) 背包式激光扫描系统。采用人工背包式背负作业,能适应复杂路线及环境。
应用领域:
一、古建文物保护领域
根据扫描获取的点云数据,生成古建正射影像。
根据正射影像可绘制古建平面、立面及剖面图等传统施工图纸。
根据三维点云模型可辅助建模,细节更加丰富,模型更加真实准确,方便后续对古建的修复、维护及展示等工作。
二、工程领域
1. 地形测量
三维激光扫描技术在测绘领域,其最基本的应用之一就是地形图绘制。基于扫描的精细点云可直接生成三维地形模型,自动提取等高线,同时可获取三维及二维数据资料。与传统测绘手段相比,三维激光扫描具有:效率高、细节丰富、成果形式多样。一次测量,地物、地形同时获得。
3D数字高程
三维地表模型
2. 规划、设计
项目规划设计阶段,首要工作是获得项目及周边的环境信息,环境信息越充分,规划设计工作越得心应手。采用三维激光扫描技术对项目目标环境进行扫描,取得的高精度三维模型,不仅直观、真实,而且包含有项目目标的全部空间信息,对规划设计工作可以起到事半功倍的效果。
在取得的三维空间信息的基础上,可以进一步进行日照分析、管道分析等。
3. 老旧建筑的维护、修复、测量
对于老旧建筑,采用三维扫描技术可以逆向绘制CAD图纸,辅助进行设计、施工、测量等工作。
三维激光扫描点云模型可以获得现状建筑的全面数据。根据点云模型返画CAD图可获得高精度的设计图纸。
4. 工程测量
由于具有高精度、扫描数据全面的特点,三维激光扫描技术可代替传统的工程测量,并在某些方面解决传统手段解决不了的难题,发挥独特的作用。
(1) 监理测量
三维激光扫描是真实场景的复制,资料具有客观可靠性,为监理隐蔽工程、重点部位工程质量提供有效依据,为避免日后的纠纷提供了客观依据。
(2) 竣工测量
竣工测量要求对实际施工完成的建筑物进行测量,基于对实景扫描及高精度的特点,三维激光扫描技术在对异形建筑测量等方面,可以发挥独特的优势。
(3) 隧道测量
通过三维激光扫描仪进行测量,获取隧道表面海量数据点,可生成真实隧道模型,无论是超欠挖分析还是收敛变形分析,结果都更加精准。
数据全面,海量点云,还原隧道真实形态,细节也清晰可辨,数据可随意查看。
结果精准,可达毫米级的测量精度,准确反映隧道变化情况。
收敛变形分析。基于多期数据,可进行隧道收敛变形分析。
超欠挖分析。通过点云模型与设计模型进行对比,可自动生成超欠挖报告,得到各段超欠挖体积分析,同时也可在任意断面处查看形态对比。
5. 变形监测
由于三维激光扫描技术具有高精度的特点,在一定的条件控制下,精度可达到1毫米以内,三维激光扫描技术可以用来对变形进行监测。主要应用在建筑物变形监测、基坑变形监测、桥梁变形监测、隧道变形监测以及地表形变监测等方面。
建筑物变形监测
基坑变形监测
桥梁变形监测
6. 土方和体积测量
采用三维激光扫描仪对现场地形地貌进行扫描,获得现场高精度三维地形数据,对相关数据进行处理后可以计算出土方工程量或其它相关体积。
根据项目情况,采用地面三维激光扫描仪在不同站点进行扫描。
扫描后,现场原始地貌被真实、直观、精确记录。
根据需要可以处理出地形图、等高线、三维模型等各种数据成果。
现场标高点位数据可现场进行复核。
测量成果可进行存档,土方体积计算可采用方格网等方式进行复核,方便后续审计、结算。
7. 三维扫描+BIM应用
三维激光扫描与BIM均以三维模型为中心,两者存在天然的相关性。三维激光扫描是BIM应用中最基础的一个重要环节,对现场三维实际进行采集后与BIM进行结合,才能发挥BIM技术的应用价值。
(1) 三维扫描协助BIM进行逆向建模
通过三维激光扫描取得真实、精确点云模型。
采用相关软件辅助建立BIM模型。
在没有目标图纸资料的情况下,采用三维激光扫描建立BIM模型是最高效的手段。建筑建成后,即使有原始图纸资料,采用三维激光扫描建立的BIM模型更符合实际修建完成的建筑,方便后期的运营管理。
(2) 辅助装饰装修等二次设计
扫描取得的点云模型提供直观及全面的原始室内原始设计数据。
在真实模型基础上进行的装修设计更加完善、减少变更及返工。
在真实模型基础上进行幕墙设计可以提高设计精度和施工质量。
(3) 施工检测及验收
BIM模型可以指导施工,三维扫描模型可以描述真实情况,将两者进行对比,不仅可以发现施工偏差,还可以检测施工质量。
实际施工模型与设计BIM模型对比,可以检查施工偏差情况。
施工偏差及施工质量分析数据一目了然。
8. 工程存档及展示
在工程建设当中,有很多工程存档及项目展示的需要,采用三维激光扫描技术可以全面对工程进行存档,全方位对工程进行展示,满足工程后期结算、索赔,以及对样板工程进行展示的需要。
9. 钢结构检测
采用三维扫描技术将复杂零部件的三维尺寸精确进行扫描,并将得到的点云与设计模型做精确地三维偏差分析,从而分析出零部件与设计模型的偏差,检测制作质量。
无接触式自动测量,高效快捷。
海量三维真彩色点云数据,即便是复杂异形钢构件也可全面测量记录。
毫米级测量精度,保证检测结果准确,采用色谱图反映实际制造成果与设计模型间偏差,显示更加全面直观。
10. 公路改扩建测量
在公路改扩建工程中,对已有旧路占地边线、路基、路面、桥涵的测量和现状描述对设计过程中的参考与决策尤为重要。采用车载激光扫描测量系统,每秒百万点的测量速率,40-60公里每小时的行驶速度,可快速获得路面点坐标信息及道路两侧地形情况。数据获取的质量和有效性高于传统的人工采集。
通过先进算法进行点云解算,点云精度可达5cm,满足公路改扩建测量精度要求。
成果丰富。海量点云可提取车道线,生成公路横断面、地形图等成果。
三、电力管理领域
对已建成的电力网络,需要有效地对其进行巡线管理,以确保电力的安全输送。
多平台激光雷达系统具有快速获取高精度激光点云和高分辨率数码影像的优点,可以获得输电线路相关距离测量的数据,适用于对新建线路的走向选择设计、对已建线路的危险点巡线检查、线路资产管理以及各种专业分析。
以高精度、高分辨率正射影像和激光点云数据为基础,结合架空送电线路设计业务需求,实现线路路径优化设计、杆塔优化设计的一体化全流程应用。基于剖面进行塔位优化,根据塔位坐标数据、塔基断面数据对线路各种指标进行统计分析。
利用无人机激光雷达系统获取的高精度点云可以检测建筑物、植被、交叉跨越等对线路的距离是否符合运行规范,线间距是否满足安全运行的要求;同时相机获取的高清晰度的影像,可以让巡检人员在室内进行线路设施设备和通道异常的判别。根据分类得到的电力线、植被和地面等分类的点云,可以计算出靠近电力线的植被并标记出来,可以起到预警的效果。
通过采集的高精度激光点云和高分辨率数码影像数据,处理成DOM、DEM,结合分类后的点云,可以实现电力线路三维建模,恢复线路走廊地形地貌、地表附着物(树木、建筑等)、线路杆塔三维位置和模型等,辅以线路设施设备参数录入,可实现线路资产管理。
四、影视制作领域
在影视拍摄中,一些特殊的场景和道具无法进行实拍,或者在一些大型动画的制作中,采用三维激光扫描技术对场景或道具进行扫描、建模,然后利用计算机进行后期制作,在大大减少人力投入的同时,效果也更显逼真。
五、结语
三维激光扫描技术的应用远不仅限于以上场景,由于与真实三维世界高度契合,符合大数据时代的技术发展趋势,三维激光扫描技术应用必定在相关领域中快速发展、大展身手,让我们拭目以待......