1. 傅立叶变换型红外光谱仪与色散型红外光谱仪的主要差别
ir是红外射线。
红外射线(IR)或者单独成为红外线是指那些能量在电磁波频谱范围内,波长比可见光略长的,但是又比无线电波波长短的射线。相应地,红外线的频率高于微波,但是低于可见光。红外线被用于各种无线通信、监测和控制应用。还有一些应用包括家庭娱乐的遥控器、无线局域网、笔记本电脑和台式电脑之间的链接、不用电线的调制解调器、动作侦察器和火灾传感器等。
2. 傅立叶变换红外光谱仪采用的是单光束分光元件
傅立叶变换需要的设备比较复杂昂贵、一般紫外可见分光光度计不用这种技术、红外光谱有用的、主要也是在某些特殊领域用、普通红外光谱仪也是不用的!
3. 傅立叶变换红外光谱仪的功能和作用
atr和ftir区别如下:
atr是显示资产标的价格在过去一段时间内的波动幅度,能够帮助交易者更好地把控交易标的的市场脉搏。
ftir指傅立叶变换红外吸收光谱仪
红外光谱仪器的第三代
傅立叶变换红外吸收光谱仪(FTIR)是红外光谱仪器的第三代。 1.光源傅立叶变换红外光谱仪要求光源能发射出稳定、能量强、发射度小的具有连续波长的红外光。傅立叶变换红外光谱仪红外工作软件,傅立叶变换红外光谱仪红外谱图的记录、处理一般都是在计算机上进行的。
4. 傅立叶变换红外光谱仪用途
傅里叶红外有透射也有反射。
傅里叶红外光谱仪是基于对干涉后的红外光进行傅里叶变换的原理而开发的红外光谱仪,产品被广泛用于医药化工、地矿、石油、煤炭等领域中。
傅里叶红外光谱仪基本原理
光源发出的光被分束器(类似半透半反镜)分为两束,一束经透射到达动镜,另一束经反射到达定镜。两束光分别经定镜和动镜反射再回到分束器,动镜以一恒定速度作直线运动,因而经分束器分束后的两束光形成光程差,产生干涉。干涉光在分束器会合后通过样品池,通过样品后含有样品信息的干涉光到达检测器,然后通过傅里叶变换对信号进行处理,最终得到透过率或吸光度随波数或波长的红外吸收光谱图。
5. 什么是傅立叶变换红外光谱
1.仪器及其校正,可使用傅里叶变换红外光谱仪或色散型红外分光光度计。用聚苯乙烯薄膜(厚度约为0.04mm)校正仪器,绘制其光谱,用3027cm-1,2851cm-1,1601cm-1,1028cm-1,907cm-1处的吸收峰对仪器的波数进行校正。傅里叶变换红外光谱仪在3000cm-1附近的波数误差应不大于±5cm-1,在1000cm-1附近的波数误差应不大于±1cm-1。
仪器的分辨率要求在3110~2850cm-1范围内应能清晰地分辨出7个峰,峰2851cm-1与谷2870cm-1之间的分辨深度不小于18%透光率,峰1583cm-1与谷1589cm-1之间的分辨深度不小于12%透光率。仪器的标称分辨率,除另有规定外,应不低于2cm-1。
2.供试品的制备方法除另有规定外,应按照药典委员会编订的《药品红外光谱集》各卷所收载各光谱图所规定的制备方法制备。具体操作技术可参见《药品红外光谱集》的说明。
3.正文中各品种项下规定“应与对照的图谱(光谱集××图)一致”,系指《药品红外光谱集》第一卷(1995年版)、第二卷(2000年版)和第三卷(2005年版)的图谱。同一化合物的图谱若在不同卷上均有收载时,则以后卷所收的图谱为准。
4.具有多晶现象的固体药品由于供测定的供试品晶型可能不同,导致绘制的光谱图与《药品红外光谱集》所收载的光谱图不一致。遇此情况,应按该药品光谱图中备注的方法或各品种正文中规定的方法进行预处理后再绘制比对。如未规定药用晶型与合适的预处理方法,则可使用对照品,并采用适当的溶剂对供试品与对照品在相同条件下同时进行重结晶后,再依法测定比对。如已规定药用晶型的,则应采用相应药用晶型的对照品依法比对。
由于各种型号的仪器性能不同,试样制备时研磨程度的差异或吸水程度不同等原因,均会影响光谱的形状。因此,进行光谱比对时,应考虑各种因素可能造成的影响。
5.用于制剂的鉴别时,品种正文中应明确规定供试品的处理方法。如处理后辅料无干扰,则可直接与原料药的标准光谱进行对比;如辅料仍存在不同程度的干扰,则可参照原料药的标准光谱在指纹区内选择3~5个辅料无干扰的待测成分的特征吸收峰,列出它们的波数位置作为鉴别的依据,实测谱带的波数误差应小于规定波数的0.5%.
6.用于晶型、异构体限度检查或含量测定时,供试品制备和具体测定方法均按各品种项下有关规定操作。
6. 色散型红外光谱仪和傅立叶变换红外光谱仪分区别
一台典型的光谱仪主要由一个光学平台和一个检测系统组成。包括以下几个主要部分:
1、入射狭缝: 在入射光的照射下形成光谱仪成像系统的物点。
2、准直元件: 使狭缝发出的光线变为平行光。该准直元件可以是一独立的透镜、反射镜、或直接集成在色散元件上,如凹面光栅光谱仪中的凹面光栅。
3、色散元件: 通常采用光栅,使光信号在空间上按波长分散成为多条光束。
4、聚焦元件: 聚焦色散后的光束,使其在焦平面上形成一系列入射狭缝的像,其中每一像点对应于一特定波长。
5、探测器阵列:放置于焦平面,用于测量各波长像点的光强度。该探测器阵列可以是CCD阵列或其它种类的光探测器阵列。扩展资料1、光谱仪的分类:光谱仪的种类很多,分类方法也很多,根据光谱仪所采用的分解光谱的原理,可以将其分成两大类:经典光谱仪和新型光谱仪。经典光谱仪是建立在空间色散(分光)原理上的仪器;新型光谱仪是建立在调制原理上的仪器,故又称为调制光谱仪。经典光谱仪依据其色散原理可将仪器分为:棱镜光谱仪、衍射光栅光谱仪、干涉光谱仪。2、光谱仪的应用:光谱仪应用很广,在农业、天文、汽车、生物、化学、镀膜、色度计量、环境检测、薄膜工业、食品、印刷、造纸、生物医学应用、荧光测量、宝石成分检测、氧浓度传感器、真空室镀膜过程监控、薄膜厚度测量、LED测量、发射光谱测量、紫外/可见吸收光谱测量、颜色测量等领域应用广泛。
7. 傅立叶变换红外光谱仪中的色散元件为
傅立叶变换红外光谱仪被称为第三代红外光谱仪,利用麦克尔逊干涉仪将两束光程差按一定速度变化的复色红外光相互干涉,形成干涉光,再与样品作用。探测器将得到的干涉信号送入到计算机进行傅立叶变化的数学处理,把干涉图还原成光谱图。
红外光谱仪是利用物质对不同波长的红外辐射的吸收特性,进行分子结构和化学组成分析的仪器。红外光谱仪通常由光源,单色器,探测器和计算机处理信息系统组成。根据分光装置的不同,分为色散型和干涉型。对色散型双光路光学零位平衡红外分光光度计而言,当样品吸收了一定频率的红外辐射后,分子的振动能级发生跃迁,透过的光束中相应频率的光被减弱,造成参比光路与样品光路相应辐射的强度差,从而得到所测样品的红外光谱。
8. 傅立叶变换红外分光光谱仪的工作原理是什么?
红外光谱仪的原理是利用物质对不同波长的红外辐射的吸收特性,进行分子结构和化学组成分析的仪器。红外光谱仪通常由光源,单色器,探测器和计算机处理信息系统组成。根据分光装置的不同,分为色散型和干涉型。
对色散型双光路光学零位平衡红外分光光度计而言,当样品吸收了一定频率的红外辐射后,分子的振动能级发生跃迁,透过的光束中相应频率的光被减弱,造成参比光路与样品光路相应辐射的强度差,从而得到所测样品的红外光谱。
9. 傅立叶变换红外光谱仪品牌
书上写:红外光谱仪中所用的光源通常是一种惰性固体,用电加热使之发射高强度连续红外辐射。常用的有能斯特灯和硅碳棒两种。这一段是现在色散型红外光谱仪那一节中讲的,而傅里叶变换红外光谱仪的构造中没有关于光源的特殊要求,我想应该也是一样的吧。
10. 傅立叶变换红外光谱仪与普通红外光谱仪的异同
傅立叶变换红外光谱仪的原理是通过测量经过红外吸收的干涉图,并对其进行傅立叶积分变换来获得被测物质的红外波段的光谱图,从而可以对该物质的元素,组分和分子结构进行分析和确定。
和传统的色散型光谱仪相比,傅立叶变换红外光谱仪可以获得较好的信噪比和分辨率。目前学校和研究所里使用的红外谱仪基本上都是傅立叶变换红外谱仪(FTIR).
11. 傅立叶变换红外光谱仪是基于什么原理进行分光的
1、几何量计量
几何量计量通常称为长度计量,是最先形成和发展的一个计量科学领域。概括地说,几何量计量的内容是物体的几何尺寸、形状和位置,即几何量的“三大要素”。几何量计量的基本参量是长度和角度,以及由它们导出的平直度、表面粗糙度、园度、圆柱度、坡度、锥度、渐开线、螺旋线等,还包括万能量具的检定、光学仪器检定及生产中特殊零件的测量。几何量计量的基本单位是“米”,符号为“m”,它是国际单位制七个基本单位之一。
几何量计量常用的计量器具主要包括:量块、角度块、直尺、千分尺、游标卡尺、百分表、千分表、平晶、水平仪、测量显微镜、投影仪、园度仪、表面轮廓仪、齿轮测量仪器、测长仪、三座标测量机等。
2、温度计量
温度计量就是利用各种物质的热效应来计量物体的冷热程度。内容包括:超低温、低温、中温、高温、超高温、热量等项。温度计量单位为开〔尔文〕,符号为“K”。
温度计量常用的计量器具主要包括:水银温度计、热电偶、半导体点温计、体温计、动圈仪表、温度指示调节仪表、温度巡回检测仪、自动温度记录仪、干燥箱、恒温恒湿箱、培养箱、高低温试验箱等。
3、力学计量
力学计量包括质量、容量、密度、压力、真空、测力、力矩、硬度、冲击、速度、流量、振动、加速度等。力学计量常用的计量器具主要包括:砝码、天平、皮带秤、衡器、标准硬度块、硬度计、拉力表、测力机、负荷传感器、材料试验机、疲劳试验机、扭矩计、扭矩扳子、扭矩扳子检定装置、扭转试验机、测功机、加速度计、速度传感器、压力计、血压计、血压表、压力表、压力变送器、燃油加油机、密度计、流量计、水表、煤气表、雷达测速仪、测速仪、转速表等。
4、电磁计量
电磁计量是根据电磁原理,应用各种电磁标准器和电磁仪器、仪表,对各种电磁物理量进行测量。电磁计量包括电流、电动势、电阻、电感、电容、磁场强度、磁通量等。电磁计量常用的计量器具主要包括:标准电池、标准电压源、标准电流源、电阻器、电容器、互感器、电阻箱、电流表、电压表、功率表、兆欧表、磁通表、电能表、电能表检定装置、直流电位差计、直流电桥、交流电桥、万用表等。
5、无线电计量
无线电计量是指无线电技术所用全部频率范围内从超低频到微波的一切电气特性的测量。主要有高频电压、功率、相位、脉冲、阻抗、噪声、失真等。无线电计量常用的计量器具主要包括:信号发生器、调制分析仪、音频分析仪、失真度测量仪、示波器、函数发生器、脑电图机、心电图机、扫频仪、心电监护仪等。
6、时间频率计量
时间和空间是描述各种客观事物的发展运动变化的基本参量,时间和频率是描述周期现象的两个不同侧面。时间和频率在数学上互为倒数,它们共用同一个基准。计量单位为秒——“s”。时间频率计量常用的计量器具主要包括:频率合成器、石英晶体振荡器、频率计、通用电子计数器、秒表、时间间隔发生器、电子计时器、电话计时计费装置等。
7、电离辐射计量
也称放射性计量,是对那些能直接或间接引起电离的辐射(X射线、γ射线、伦琴射线、镭、铀钍元素的中子辐射)进行测量称之为电离辐射计量。电离辐射计量分为适度计量(或称强度计量)和剂量计量两个方面。它广泛应用于医疗卫生(如服用同位素、肝扫描都必须剂量诊断准确)、环保监测、原子能发电、探矿、探伤、石油管道去污定位以及应用于农业上的育种等。电离辐射计量常用的计量器具主要包括:工作用γ射线辐射源、医用CT扫描仪、辐射加工工作剂量计、X射线探伤机、X辐射防护仪器、剂量笔、γ辐射防护仪表、医用诊断X辐射源、固体工作剂量计、化学工作剂量计、伦琴计等。
8、光学计量
光学计量主要包括光强、光通量、亮度、照度、色度、辐射度、感光度、激光等。光学计量应用很广泛,现代建筑物的建造要进行光强度的计量,以达到规定的照度标准。在光谱学方面,需要测量光谱的光度。此外,软片、胶卷的感光度、光学玻璃的折射率、染印、颜料、电影、电视都需要准确的光度、色度、和色温计量。在国防上,如导弹的导向、特种摄影等更需要对激光、紫外线、红外线进行准确的测量。光学计量的基本单位是发光强度坎〔德拉〕,符号:cd。光学计量常用的计量器具主要包括:照度计、亮度计、标准色板、色差计、测色光谱光度计、医用激光源、焦度计、阿贝折射仪、角膜接触镜、瞳距测量仪、验光机、标准镜片、光谱分析仪、光泽度计、汽车前照灯检测仪等。
9、声学计量
声学计量是专门研究测量物质中声波的产生、转播、接收和影响特性。声强、声压、声功率是声学计量中三个重要的基本参量,其中声压应用最广泛。声学计量涉及到通信、广播、电影、电视、房屋建筑、医药卫生、航行、海防、语言、音乐、工农业生产,以及各种生产、生活与科学领域。声学计量常用的计量器具主要包括:传声器、声级计、超声探伤仪、超声测厚仪、医用超声源、超声功率源、听力计、助听器等。
10、化学计量
化学计量也称物理化学计量,是指对各种物质的成分和物理特性、基本物理常数的分析、测定。主要包括:酸碱度、气体分析、燃烧热、粘度、标准物质等。由计量部门通过发放标准物质进行量值传递是化学计量的显著特点。
化学计量常用的计量器具主要包括:酸度计、浊度计、可见分光光度计、原子吸收分光光度计、荧光分光光度计、滤光光电比色计、烟度计、粘度计、热量计、粉尘浓度测定仪、烟尘浓度测定仪、液相色谱仪、气相色谱仪、电导率仪、电解式水分仪、一氧化碳测定仪、二氧化硫分析仪、定碳定硫分析仪、自动电位滴定仪、有毒有害可燃气体分析检测报警仪、元素分析仪、傅里叶变换红外光谱仪、水分测定仪、常用玻璃量器、工业分析仪、酒精探测器等。