返回首页

电容器充满电后(电容器充满电后电压)

来源:www.haichao.net  时间:2023-01-13 22:18   点击:244  编辑:admin   手机版

1. 电容器充满电后电压

电容器上的电压,是电源供给的,通常不会大于电源电压。如果真的发生,大于电源电压的情况,电容器会向电源放电,这是电容器,相当于电源,而原来的电源变成了,吸收能量的负载。

2. 电容器充满电后电压会变吗

直流电路串接电容后,电容两端电压为所断开两端的电压。因为电容对直流电相当于开路(隔直流)。

在交流电路中串接电容,在断开两端产电压降,其电压大小为:Uc=IXc  其中:Xc 为容抗

Xc=1/2πfC(f电源频率,C电容量)

在相位上,Uc要滞后电流I π/2(90º)

3. 电容器充满电后电压不变

因为电容器的两个析板上总会有等量异号的电荷,这是电容器的特性。

假如说电容器只是一个极板接地,别一个极板由于与外界绝缘,电荷量保持不变,由于上述特性,电容器另一极板上的电荷量也保持不变。源自:大比商务网。

4. 电容器充电时电压

1、因为刚开始充电时,电容相当于短路,所以电流大,接近充满时,电容相当于断路,所以电流小 2、随着充电的时间变长,电容所储存的电荷增加,所以电压升高 3、电容两端的电势增加,电场强度自然也就增加 4、因为电容充电后电压只能≤电源电压而不可能大于电源电压

5. 电容器充放电电压

电容电压的关系,电容电压的计算公式

电容(Capacitance)亦称作“电容量”,是指在给定电位差下的电荷储藏量,记为C,国际单位是法拉(F)。

一般来说,电荷在电场中会受力而移动,当导体之间有了介质,则阻碍了电荷移动而使得电荷累积在导体上,造成电荷的累积储存,储存的电荷量则称为电容。

电容是指容纳电场的能力。

任何静电场都是由许多个电容组成,有静电场就有电容,电容是用静电场描述的。一般认为:孤立导体与无穷远处构成电容,导体接地等效于接到无穷远处,并与大地连接成整体。

电容(或称电容量)是表现电容器容纳电荷本领的物理量。

电容从物理学上讲,它是一种静态电荷存储介质,可能电荷会永久存在,这是它的特征,它的用途较广,它是电子、电力领域中不可缺少的电子元件。主要用于电源滤波、信号滤波、信号耦合、谐振、滤波、补偿、充放电、储能、隔直流等电路中。

电容器所带电量Q与电容器两极间的电压U的比值,叫电容器的电容。【电容电压的关系,电容电压的计算公式】

在电路学里,给定电势差,电容器储存电荷的能力,称为电容(capacitance),标记为C。

采用国际单位制,电容的单位是法拉第(farad),标记为F。电工天下

由于法拉这个单位太大,所以常用的电容单位有毫法(mF)、微法(μF)、纳法(nF)和皮法(pF)等,如果用GSC单位制,电容的单位是静法。

根据电容的定义,电容器两极间的单位电压下储藏的电量叫做电容,电容应该是电量与电压的比值,也就是C=Q/U。

一个电容器,如果带1库仑的电量时两级间的电压是1伏特,这个电容器的电容就是1法拉第,即:C=Q/U 。

但电容的大小不是由Q(带电量)或U(电压)决定的,即电容的决定式为:C=εS/4πkd 。其中,ε是希腊字母,读作epsilon,是一个常数,S为电容极板的正对面积,d为电容极板的距离,k则是静电力常量。常见的平行板电容器,电容为C=εS/d(ε为极板间介质的介电常数,S为极板面积,d为极板间的距离)。

电容的充放电计算公式

电容充放电时间的计算:

电容充放电时间的计算: 1.L、 元件称为“惯性元件”, C 即电感中的电流、 电容器两端的电压, 都有一定的“电惯性”, 不能突然变化。

充放电时间,不光与 L、C 的容量有关,还与充/放电电路中的电阻 R 有关。

“1UF 电容它的充放电时间是多长?”,不讲电阻,就不能回答。

RC 电路的时间常数:τ=RC 充电时,uc=U×[1-e^(-t/τ)] U 是电源电压 放电时,uc=Uo×e^(-t/τ) Uo 是放电前电容上电压 RL 电路的时间常数:τ=L/R LC 电路接直流,i=Io[1-e^(-t/τ)] Io 是最终稳定电流 LC 电路的短路,i=Io×e^(-t/τ)] Io 是短路前 L 中电流 2. 设 V0 为电容上的初始电压值; V1 为电容最终可充到或放到的电压值;

Vt 为 t 时刻电容上的电压值。

则:

Vt=V0 +(V1-V0)× [1-exp(-t/RC)] 或 t = RC × Ln[(V1 - V0)/(V1 - Vt)] 例如,电压为 E 的电池通过 R 向初值为 0 的电容 C 充电,V0=0,V1=E,故充到 t 时刻电容 上的电压为: Vt=E × [1-exp(-t/RC)]

再如,初始电压为 E 的电容 C 通过 R 放电 , V0=E,V1=0,故放到 t 时刻电容上的电压为: Vt=E × exp(-t/RC)

又如,初值为 1/3Vcc 的电容 C 通过 R 充电,充电终值为 Vcc,问充到 2/3Vcc 需要的时间 是多少? V0=Vcc/3,V1=Vcc,Vt=2*Vcc/3,故 t=RC × Ln[(1-1/3)/(1-2/3)]=RC × Ln2 =0.693RC

注:以上 exp()表示以 e 为底的指数函数;Ln()是 e 为底的对数函数

3. 提供一个恒流充放电的常用公式:?Vc=I*?t/C. 【电容电压的关系,电容电压的计算公式】

再提供一个电容充电的常用公式: Vc=E(1-e-(t/R*C))。RC 电路充电公式 Vc=E(1-e-(t/R*C))中的:-(t/R*C)是 e 的负指数项 。 关于用于延时的电容用怎么样的电容比较好,不能一概而论,具体情况具体分析。实际电容 附加有并联绝缘电阻,串联引线电感和引线电阻。还有更复杂的模式--引起吸附效应等等。

E 是一个电压源的幅度, 通过一个开关的闭合, 形成一个阶跃信号并通过电阻 R 对电容 C 进行充电。E 也可以是一个幅度从 0V 低电平变化到高电平幅度的连续脉冲信号的高电平幅度。 电容两端电压 Vc 随时间的变化规律为充电公式 Vc=E(1-e-(t/R*C))。

其中的: -(t/R*C) 是 e 的负指数项,这里没能表现出来,需要特别注意。式中的 t 是时间变量,小 e 是自然指 数项。举例来说:当 t=0 时,e 的 0 次方为 1,算出 Vc 等于 0V。符合电容两端电压不能突 变的规律。

对于恒流充放电的常用公式:?Vc=I*?t/C,其出自公式:Vc=Q/C=I*t/C。 电工天下

举例:设 C=1000uF,I 为 1A 电流幅度的恒流源(即:其输出幅度不随输出电压变化)给电容 充电或放电,根据公式可看出,电容电压随时间线性增加或减少,很多三角波或锯齿波就是 这样产生的。根据所设数值与公式可以算出,电容电压的变化速率为 1V/mS。

这表示可以 用 5mS 的时间获得 5V 的电容电压变化;换句话说,已知 Vc 变化了 2V,可推算出,经历 了 2mS 的时间历程。

当然在这个关系式中的 C 和 I 也都可以是变量或参考量。详细情况可 参考相关的教材看看。供参考。

4. 可得: 首先设电容器极板在 t 时刻的电荷量为 q,极板间的电压为 u.,根据回路电压方程:U-u=IR(I 表示电流),又因为 u=q/C,I=dq/dt(这儿的 d 表示微分哦),代入后得到: U-q/C=R*dq/dt, 也就是 Rdq/(U-q/C)=dt,然后两边求不定积分, 并利用初始条件: t=0,q=0 就得到 q=CU 【1-e^ -t/(RC)】这就是电容器极板上的电荷随时间 t 的变化关系函数。

顺便指出,电工学上常把 RC 称为时间常数。

相应地,利用 u=q/C,立即得到极板电压随时间变化的函数, u=U【1-e^ -t/(RC)】。

从得到的公式看,只有当时间 t 趋向无穷大时,极板上的电荷和电压 才达到稳定,充电才算结束。

但在实际问题中,由于 1-e ^-t/(RC)很快趋向 1,故经过很短的一段时间后,电容器极板间电荷和电压的变化已经微乎其微,即使用灵敏度很高的电学仪器也察觉不出来 q 和 u 在微小地变化,所以这时可以认为已达到平衡,充电结束。

6. 电容器充满电后电压是多少

12V电瓶充满后电压为13.5v,给电容充电最高也只能充到13.5V,电容电压不会超过电瓶电压的

7. 电容充满电后电压是多少

1.电容器在充、放点(储存于释放电荷)的过程中,必然在电路中产生电流,但这个电流并不是从电容的一个极板穿过绝缘物进入另一极板,而是在电容外的电路中来回流动。

2.两端的电压是逐渐变化的,即电容上有点哑不能突变。

3.充电和放电都是需要一定的时间才能完成的,试验证明:充放电的过程遵守指数全线的变化规律。 

8. 电容器充满电后电压变化

简单的说过程是这样的: 电容器两端加电压充电,在外加电压的作用下两极板之间的电子经过导线移动(充电),造成一端聚集正电荷+U,另一端聚集负电荷-U。于是两极板之间产生了电势差(+U)-(-U)=U。

假设两平面极板之间的距离为D,则根据场强的定义:E=U/D。因此在充电过程中,两极板上聚集的电荷量增加,极板间电压升高,场强随之增强。直至两极板间电压升高到与电源电压相同。充电结束。电容器放电时,上述变化正好相反。极板上的电荷量减少,电压降低,场强减弱。

顶一下
(0)
0%
踩一下
(0)
0%