返回首页

晶体三极管放大的简单原理(晶体管放大器原理图)

来源:www.haichao.net  时间:2022-12-27 06:50   点击:197  编辑:admin   手机版

1. 晶体管放大器原理图

晶体管和门电路存在很大的区别。晶体管可以作放大器,或者也可以用作开关器件,一般在模拟电子线路中有广泛的应用。而门电路是逻辑电路,主要应用在数字电路中,作为逻辑门电路,各类触发器,计数器,分频器等等。虽然门电路也可以由晶体管组成,但二者的区别还是不小的。

2. 晶体管基本放大电路的基本原理

放大电路中,把一个三极管构成的放大电路叫做单管放大电路,也叫做单级放大电路。所谓的两级放大就是有两个单管放大构成的电路,从信号的传递方向说,前面的叫前级,后面的叫后级。其工作原理是:输入信号加到前级的输入端,经过前级放大后加到后级的输入端,再经后级放大。在两级放大器中,放大器的输入端事实上就是前级的输入端,前级的输出也就是后级的输入,后级的输出也就是两级放大的输出;前级是后级的信号源,后级是前级的负载。因此,两极放大的线性电压放大倍数就等于前后两级放大倍数的乘积;放大器的输入电阻就是前级的输入电阻;放大器的输出电阻就是后级的输出电阻。

半导体晶体管的三种放大电路原理如下:

1、----共基极放大电路。它的特点是输入阻抗低,输出阻抗高,电流放大倍数小于1,不易与前级匹配。

2、----共发射极放大电路。它的特点是电流放大倍数较大,功率放大倍数更大,但在强信号是失真较大。

3、----共集电极放大电路。它的特点是输入阻抗高,输出阻抗低,常用于阻抗匹配电路,增益最小。仅供参考,谢谢!

3. 晶体管放大电路

  三极管的基本放大电路基本放大电路是放大电路中最基本的结构,是构成复杂放大电路的基本单元。它利用双极型半导体三极管输入电流控制输出电流的特性,或场效应半导体三极管输入电压控制输出电流的特性,实现信号的放大。  放大电路的组成原则:  

1、保证放大电路的核心器件三极管工作在放大状态,即有合适的偏置。也就是说发射结正偏,集电结反偏。  

2、输入回路的设置应当使输入信号耦合到三极管的输入电极,形成变化的基极电流,从而产生三极管的电流控制关系,变成集电极电流的变化。  

3、输出回路的设置应该保证将三极管放大以后的电流信号转变成负载需要的电量形式(输出电压或输出电流)。

4. 晶体管放大器原理图讲解

1 电路原理有很大不同。

如电流,电压,发热程度,焊接方法。

2 使用寿命。

电子管是有使用寿命的,达到一定程度需要更换。晶体管一般不损坏不需要更换。

3 声音不同

电子管声音给人感觉偏暖,比较适合人声,弦乐的表现。晶体管更有力量,速度,更适合交响乐,电子乐等。

5. 晶体管放大电路工作原理

在射电路中,从基极注入基极电流从发射极流出,放大的电流从集电极流入从发射极流出

6. 晶体管放大器原理图解

输出功率(output power):

表明该功率放大器在一定负载下输出功率的大小

,一般在功放说明书上标明在8欧姆负载,4欧姆负载或2欧姆负载状态下的输出功率,同时也会表明功放在桥接状态下,8欧姆负载时或4欧姆负载时的输出功率。这个输出功率表示功放的额定输出功率

,而不是最大或者峰值输出功率。

负载阻抗(load impedance):

表明功放的负载能力,负载的阻抗越小,表明功放能通过的电流能力就越强

,一般来说,大部分的功放最低负载阻抗为4欧姆,品质好的功放最低负载一般为2欧姆。双通道时能够负载4欧姆的功放,在桥接状态下可以负载最低为8欧姆,双通道时能够负载2欧姆的功放,桥接状态下可以负载4欧姆。桥接状态下只能负载8欧姆的功放,不可以负载更低的阻抗,否则会造成功放因为电流过大而烧毁。

立体声(两路)模式(stereo mode or dual mode):

一般的功放内部具有两个独立的放大电路,可以分别接受两路不同的信号分别进行放大并输出

,这种工作状态称为立体声(两路)模式。

桥接模式(bridge mode):

桥接模式是利用功放内部的两个放大电路相互推挽,从而产生更大输出电压的方式

,功放设定为桥接模式后,成为一台单声道放大器,只可以接受一路输入信号进行放大,输出端为两路功放输出的正端之间。

并联输入模式(parallel mode):

此方式将功放的两路输入信号通道进行并联,只输入一路信号来同时驱动两个放大电路,两个输出端输出信号相同。

频响范围(frequency range):

表明功放可以进行放大的工作频段,一般为20-20000赫兹

,一般在此数据后面有一个后缀,比如-1/+1dB,这代表这个频率范围的误差或浮动范围,这个数值约小,表明频率范围内的频响曲线更平直。如果功放的频响范围以-3分贝为测试条件,这个功放出来的声音可能就没有那么平直了。

总谐波失真(THD):

表明功放工作时,由于电路不可避免的振荡或其他谐振产生的二次,三次谐波与实际输入信号叠加,在输出端输出的信号就不单纯是与输入信号完全相同的成分,而是包括了谐波成分的信号,这些多余出来的谐波成分与实际输入信号的对比,用百分比来表示就称为总谐波失真。一般来说,总谐波失真在1000赫兹附近最小,所以大部分功放表明总谐波失真是用1000赫兹信号做测试,但有些更严格的厂家也提供20-20000赫兹范围内的总谐波失真数据。总谐波失真在1%以下,一般耳朵分辨不出来,超过10%就可以明显听出失真的成分。这个总谐波失真的数值越小,音色就更加纯净

。一般产品的总谐波失真都小于1%@1kHz,但这个数值越小,表明产品的品质越高。

互调失真(IMD):

互调失真是由于功放内部的晶体管工作特性引起的,使正弦波的波形发生畸变而产生的。

互调失真的存在,直接影响到声音的音质,电子管放大器没有互调失真,所以一般来说晶体管放大器听起来感觉没有电子管功放那么柔和,舒服。一般互调失真的数值如果大于0.1%,这个功放的声音就感觉生硬,发涩,不抒展。

共模抑制比(CMRR):

共模抑制是用来衡量共模信号被放大器抑制程度的一个综合指标。

这个参数一般用负值表示,比如-60dB,这个指标也是严重影响放大器的音质的指标,此指标数字越低,功放的音质就越好。

阻尼系数(damping factor):

这是功放内阻和负载阻抗的比值,阻尼系数=音箱的阻抗÷(功放的内阻+音箱线的阻抗)

,高阻尼系数的功放对音箱单元的控制能力加强,可以让单元的反应更加接近功放输出信号的要求,但过高的阻尼系数将导致音箱的低频延展性变差,声音干硬。比较低的阻尼系数可以获得柔和的低音,但过低的阻尼系数将造成低音变得拖沓,不干净。一般的功放阻尼系数在200-1000@8欧姆之间

。音箱线质量不好,线电阻大同样会影响功放的阻尼系数,造成功放对音箱的控制力减弱,声音变散。

输入灵敏度(input sensitivity):

这是个电压概念,表明当功放达到满功率输出时,在输入端的信号电压的大小,一般的功放的输入灵敏度电压为0.775v(0dB)到1.5v(+6dB)之间,灵敏度电压越高,输入灵敏度越低。

有些高品质功放,输入灵敏度低是由于采用更深的负反馈电路,所以具有更低的失真,更宽的频响和更好的音质。

信噪比(S/N or SNR or Hum and Noise):

指功放信号电压和本底噪声电压的比值,这个数值越大,表明功放的噪声更低。

一般专业产品的信噪比都在100分贝左右,用正值标注时,越高越好(有些功放采用负值标注,数值越小越好)。衰减功放的输入电平增益(关小功放音量旋钮)会降低功放的信噪比。

通道串扰(crosstalk):

意味着功放内部两个放大通道之间通过电路耦合产生的串音

,此指标不好,一个声道的信号就会串到另外一个声道去,从而在另外一个通道产生不干净的声音,通道串扰的数值一般为-60分贝左右。

这个数值用负值标注时,数值越低,表示两个放大通道之间的分离度越高,声音越干净。

转换速率(Slew Rate):

衡量放大器的响应速度一般是用电压转换速率其定义是在1微秒时间里电压升高幅度

,如果以方波测量的话则是电压由波谷升至波峰所需时间,单位是V/u s,数值愈大表示瞬态响应度越好,感觉声音的速度快,能量集中。专业功放的转换速率一般都可以做到40V/u s以上。转换速率低于20V/u s的功放出来的声音会感觉拖沓和发散。

高通滤波器(high pass filter or HPF):

音响系统中,有时会有一些极低频的次声波(infrasonic)信号夹杂在全音频信号当中,这些次声波信号人耳听不见,但是这种信号进入音箱,就会导致低音喇叭产生自激,并导致喇叭损坏,所有,有些功放内部装有次声波消除滤波器,有些是在后面板设置开关,可以在需要的时候切除无必要的30赫兹或40赫兹以下的频率,保护喇叭的安全。

限幅器(limiter):

这是功放的保护措施之一

,在功放输入电压超过输入灵敏度电压时,对输入信号进行限幅,从而避免功放因为过高的输入电压产生削波失真。有些功放的限幅器是自动启动的,有些功放在后面板安装了限幅器启动开关来控制限幅器的启动状态。

接地开关(ground left):

功放的机箱一般与电源变压器屏蔽相连,功放机箱也具有接地端,但这个“地”与信号的“地”不同。当电源的接地端存在干扰时,打开接地开关让功放机箱的接地与之相接可以降低交流声干扰,如果电源地线没有干扰就不要接通。

7. 简述晶体管的放大原理?

能够把微弱的信号放大的电路叫做放大电路或放大器。例如助听器里的关键部件就是一个放大器。

放大器有交流放大器和直流放大器。交流放大器又可按频率分为低频、中源和高频;接输出信号强弱分成电压放大、功率放大等。此外还有用集成运算放大器和特殊晶体管作器件的放大器。它是电子电路中最复杂多变的电路。但初学者经常遇到的也只是少数几种较为典型的放大电路。

读放大电路图时也还是按照“逐级分解、抓住关键、细致分析、全面综合”的原则和步骤进行。首先把整个放大电路按输入、输出逐级分开,然后逐级抓住关键进行分析弄通原理。放大电路有它本身的特点:一是有静态和动态两种工作状态,所以有时往往要画出它的直流通路和交流通路才能进行分析;二是电路往往加有负反馈,这种反馈有时在本级内,有时是从后级反馈到前级,所以在分析这一级时还要能“瞻前顾后”。在弄通每一级的原理之后就可以把整个电路串通起来进行全面综合。

8. 晶体管放大器原理图设计说明

主要是根据两个pn结的偏置条件来决定:

发射结正偏,集电结反偏——放大状态;

发射结正偏,集电结也正偏——饱和状态;

发射结反偏,集电结也反偏——截止状态。

这些状态之间的转换,可以通过输入电压或者相应的输入电流来控制,例如:

在放大状态时,随着输入电流的增大,当输出电流在负载电阻上的压降等于电源电压时,则电源电压就完全降落在负载电阻上,于是集电结就变成为0偏压,并进而变为正偏压——即由放大状态转变为饱和状态。当输入电压反偏时,则发射结和集电结都成为了反偏,没有电流通过,即为截止状态。

9. 晶体管的放大原理是什么

双极型晶体管的放大原理来源于其电流放大能力。具体的话其放大原理是由其晶体能级结构的量子效应导致的,如果你不搞材料学或理论物理的只要记得在一定范围内基极电流和集电极电流线性相关这一结论就可以了。(这边我也没有去深究) 场效应管,不论是金属氧化物半导体场效应管还是结型场效应管,本质都是一个电压控制的电流源。其放大效应源自于这个结构的跨导和偏置电路形成的分压器。

10. 晶体管放大器原理图片

芯片是一种由大量的晶体管构成的集成电路,能够将电路制造在半导体芯片表面上从而进行运算与处理。

芯片的工作原理是将电路制造在半导体芯片表面上从而进行运算与处理的。

晶体管有开和关两种状态,分别用1和0表示,多个晶体管能够产生多个1和0信号,这种信号被设定为特定的功能来处理这些字母和图形等。

在加电后,芯片会产生一个启动指令,之后芯片就会开始启动,接着就会不断的被接受新的数据和指令来不断完成。

顶一下
(0)
0%
踩一下
(0)
0%