返回首页

二极管什么时候发明的(二极管发明史)

来源:www.haichao.net  时间:2022-12-25 17:54   点击:213  编辑:admin   手机版

1. 二极管发明史

二极管导通状态及其截止状态的工作原理,

要了解二极管的截止状态,首先,需要清楚的认知二极管的P区和N区,外观上区分时,有一圈白色或黑色圆圈一端的是N区,另一端是P区;管脚短的是N区,长的是P区。在二极管P区接电源正极,N区接电源负极,此为正偏,因为二极管正常工作时导通的电流方向是由P区流向N区,阻挡层变薄,电荷很容易通过,那么我们可以粗略的认为正偏时候的二极管是一个导体。二极管处于导通状态。

倘若将P区接电源负极,N区接电源正极,此时的电流方向由N区流向P区,此状态称为反偏,反偏使阻挡层变厚,只能通过很小的漏电流,粗略的认为反偏时的二极管是绝缘体。二极管处于截止状态。

二极管正偏时导通,反偏时截止。另外硅管导通电压是0.7V,锗管导通电压是0.3V。当电源电压低于导通电压时,即便接成正偏,那么二极管也处于截止状态。

阳极反应电对的电位比如锌和铜组成原电池阳极反应Cu2+ +2e =Cu,阳极电位就是Cu/Cu2+,具体的值是需要查表的。阴极的电极电位。它随流过电极的电流密度而变化,电流密度增大,阴极电位向负方向移动。

当二极管的阳极电位高于阴极电位,称为给二极管加正向电压。当二极管承受正向电压很低时,二极管呈现出一个大电阻,好像有一个门槛。硅管的门槛电压(又称为死区电压)约为0.5 V,锗管的死区电压约为0.1 V。

这种电位的高低容易对二极管的截止状态产生影响。所谓截止状态就是发射结和集电极都是反偏的状态,输出电流当然很小;这是一种”关”态。在共基极组态中,该很小的输出电流也就是集电结的反向饱和电流Ibco;而在共发射极组态中,该很小的输出电流是E、C电极之间的所谓穿透电流Ieco。

当二极管正偏导通时,两端的管压降并不为0。对硅材料的二极管来说,管压降约为0.7V左右,而锗材料的约为0.3V左右。因此要比较准确的计算出电压值,还应将二极导通的管压降考虑进去。

而对于二极管反偏截止时,由于反向电阻极大,可以认为其中流过的电流为0

2. 二极管发明史有哪些

英国物理学家约翰·弗莱明在1904年发明了世界上第一个电子管——真空二极管,并获得了这项发明的专利权。真空二极管也被视作开启电子时代的鼻祖。

1906年,美国工程师李·德·福雷斯特在弗莱明二极管的基础上又多加入了一个栅极,发明出新型的真空三极管,使得真空管在检波和整流功能之外,还具有了放大和震荡功能。福雷斯特于1908年2月18日拿到了这项专利。

3. 二极管发明史多少年

①1962年,GE、Monsanto、IBM的联合实验室开发出了发红光的磷砷化镓(GaAsP)半导体化合物,从此可见光发光二极管步入商业化发展进程。   ②1965年,全球第一款商用化发光二极管诞生,它是用锗材料做成的可发出红外光的LED,当时的单价约为45美元。其后不久,Monsanto和惠普公司推出了用GaAsP材料制作的商用化红色LED。这种LED的效率为每瓦大约0.1流明,比一般的60至100瓦白炽灯的每瓦15流明要低上100多倍。   ③1968年,LED的研发取得了突破性进展,利用氮掺杂工艺使GaAsP器件的效率达到了1流明/瓦,并且能够发出红光、橙光和黄色光。   ④1971,业界又推出了具有相同效率的GaP绿色芯片LED。   ⑤到20世纪70年代,由于LED器件在家庭与办公设备中的大量应用,LED的价格直线下跌。事实上,LED在那个时代主打市场是数字与文字显示技术应用领域。   ⑥80年代早期的重大技术突破是开发出了AlGaAsLED,它能以每瓦10流明的发光效率发出红光。这一技术进步使LED能够应用于室外信息发布以及汽车高位刹车灯(CHMSL)设备。   ⑦1990年,业界又开发出了能够提供相当于最好的红色器件性能的AlInGaP技术,这比当时标准的GaAsP器件性能要高出10倍。   ⑧今天,效率最高的LED是用透明衬底AlInGaP材料做的。在1991年至2001年期间,材料技术、芯片尺寸和外形方面的进一步发展使商用化LED的光通量提高了将近30倍。   ⑨1994年,日本科学家中村修二在GaN基片上研制出了第一只蓝色发光二极管,由此引发了对GaN基LED研究和开发的热潮。1996年由日本Nichia公司(日亚)成功开发出白色LED。   ⑩20世纪90年代后期,研制出通过蓝光激发YAG荧光粉产生白光的LED,但色泽不均匀,使用寿命短,价格高。随着技术的不断进步,近年来白光LED的发展相当迅速,白光LED的发光效率已经达到38lm/W,实验室研究成果可以达到70lm/W,大大超过白炽灯,向荧光灯逼近。   近几年来,随着人们对半导体发光材料研究的不断深入,LED制造工艺的不断进步和新材料(氮化物晶体和荧光粉)的开发和应用,各种颜色的超高亮度LED取得了突破性进展,其发光效率提高了近1000倍,色度方面已实现了可见光波段的所有颜色,其中最重要的是超高亮度白光LED的出现,使LED应用领域跨越至高效率照明光源市场成为可能。曾经有人指出,高亮度LED将是人类继爱迪生发明白炽灯泡后,最伟大的发明之一。

4. 二极管的发明

他们三个发明了基于InGaN的蓝光发光二极管。InGaN的禁带宽度大,所以电子从导带向价带坠落时发出高能量(短波长)的光。比如用GaAs作为二极管,由于禁带宽度小,只能发出红外光。宽禁带的晶体长晶不容易,GaN不能像GaAs或Si一样长成大片,柱形的单晶体。考虑到晶格的匹配,一般只能在蓝宝石上生长(现在也能在其他基地上生长,SiC,Si,甚至金属)。个人觉得这几年的诺贝尔物理奖更倾向于给应用物理方面的,能够在世界产生巨大应用前景或已经产生极大影响的研究成果。比如光纤,石墨烯,加这次的蓝光发光二极管。蓝光二极管的产生,三元发光色才完备,才能使白光显像成为可能。现在的广场大屏幕LED,手机,电视都在用,已经融进了每家每户。市场上已经大量出现LED的灯泡,他们是通过改变蓝光和黄光的比例产生出白光或类似太阳色的自然光,其中黄光是通过蓝光照射荧光粉产生的。所以有了蓝光LED 就有了白光,使节能的白光LED照明成为可能。之后的紫外光二极管加荧光粉产生的白光二极管(日光灯原理: 汞蒸气产生紫外光,紫外光轰击荧光粉后产生二级光子为白光),使白光具有了全光谱。未来的家庭,市政的光源必定是LED的天下。从影响力上看,这几十年的物理研究,影响力无出其右。======================================================================评论里很多人说第一段太专业,看不懂。有大学物理系本科的固体物理知识,应该都能看懂。这里稍微解释一下。多数解释性内容copy自wiki,因为wiki上的解释已经非常好了,至少比我临时写得要好。首先解释下能带(引号斜体from wiki):“固体材料的能带结构由多条能带组成,能带分为传导带

(简称导带)、价电带(简称价带

)和禁带等,导带和价带间的空隙称为能隙。

能带结构可以解释固体中导体

、半导体

、绝缘体

三大类区别的由来。材料的导电性是由“传导带”中含有的电子数量决定。当电子从“价带”获得能量而跳跃至“传导带”时,电子就可以在带间任意移动而导电。

一般常见的金属材料,因为其传导带与价带之间的“能隙”非常小,在室温下电子很容易获得能量而跳跃至传导带而导电,而绝缘材料则因为能隙很大(通常大于9电子伏特),电子很难跳跃至传导带,所以无法导电。一般半导体材料的能隙约为1至3电子伏特,介于导体和绝缘体之间。因此只要给予适当条件的能量激发,或是改变其能隙之间距,此材料就能导电。

”我真的不太会科普,wiki的这段表述也不太容易理解,所以尽力解释下:通俗点说(但不严谨): 电子在晶体中有两种状态,一种是束缚态,绕着原子核转的。另一种是自由状态,可以在不同的原子核或是晶格中来回跑的。自由状态的能量一般比束缚状态的能量要高一点。比如说金属,有很大一部分电子是自由的,可以在不同晶格中穿梭,所以金属能导电。但是本征半导体(没有掺杂的半导体)或绝缘体,电子都束缚在原子核周围。靠热激发,电子还不能变成自由态,所以一般情况下不导电。对于本征半导体或绝缘体,从束缚状态到自由状态,电子需要一定的能量去激发,可以通过热,震动,光子,其他粒子等等。束缚态中,存在着各种能带,电子可以存在于这些能带中,每个能带存在着两个自旋相反的电子。电子的能量从低到高填满了这些束缚态的能带,我们称之为价带

。价带填满的时候,价带是满带,满带不导电。其中价带的能量最高的那一条带的能量最高点,称之为价带顶。

一会会用到这个概念。同样,自由态现在是空带,没有电子,也不会导电。但是一旦有了电子,这些电子就能自由穿梭,开始导电,自由态对应的能带,我们成为导带。

其中导带的能量最低的那一条带的能量最低点,称之为导带底。

价带顶和导带底之间的能量差称之为禁带。电子不能在禁带中存在,因为没有可以存在的态。

那么怎么让半导体导电呢,就是掺杂。”掺杂是半导体

制造工艺中,为纯的本征半导体

引入杂质,使之电气属性被改变的过程。

“掺杂就是在禁带中增加一条掺杂能级, 本来不能有电子存在的地方,由于引入了一条掺杂能级了,所以可以有电子存在。有的掺杂能级靠近价带,称为P掺杂,价带中的电子通过热激发到了掺杂能级,就能导电,因为这时价带不再是满带,空穴能自由走。想象一下,一个原子缺了一个束缚的电子后,边上的原子有时会贡献一个电子给他,边上的原子就缺了一个电子。缺了电子的位置成为空穴。同时,有的掺杂能级靠近导带就是N掺杂。掺杂能级中的电子可以激发到导带,参与传导。 这些参与导电的电子或空穴成为载流子

。载流子浓度越高,导电性能越好。把P型半导体和N型半导体贴在一起就是个PN结,Diode(二极管)。 LED就是PN结的一个应用,其中D 就是Diode。刚才说到,P型掺杂后,价带上有空穴;N型掺杂后,导带上有电子。那么将P和N贴在一起会发生什么呢?导带上的电子会落到价带上的空穴,这是个电子空穴的复合过程,复合的过程也是一个发光的过程。因为导带上的电子能量高 ,价带上的空穴能量低。在下落过程中,发出一个光子。这个光子的能量正好是导带底的能量减去价带顶的能量,也就是之前说的禁带宽度。光子的能量和光子的波长有关,E=hv。波长越短,颜色偏紫,能量越高;波长越长,颜色偏红,能量越低。也就是说:禁带宽度越大,产生偏蓝光,禁带宽度越小,产生偏红光

。这些就是LED的基本原理了。好像涵盖了第一段所有的术语了,有哪儿没有科普清楚的,请在评论里写出,择日回答。

5. 最早的二极管是谁发明的

早在1907年开始,人们就发现某些半导体材料制成的二极管在正向导通时有发光的物理现象,但生产出有一定发光效率的红光LED已是1969年了。

1994-1995年人们开发成功了蓝光LED,并在1998年实现了真正商品化。2000-2002年间,研发人员不断追求成本效益,使LED成功打入手机背光源市场。到今天,LED已生产了30多年,各种类型的LED、利用LED作二次开发的产品及与LED配套的产品(如白光LED驱动器)发展迅速,新产品不断上市,并已发展成为一种新型产业。LED技术研发之路,最为人津津乐道的故事,就是开发蓝光LED时,碳化矽(SiC)与氮化镓(GaN)两大门派之争。

这也是许多研发团队辛勤投入开发蓝光LED元件时,必须痛苦抉择的两条截然不同的道路。

之前,全球许多大公司皆投入SiC研发,结果日本一家专门做荧光粉业务的公司——日本日亚化工公司(NichiaChemicalIndustriesLtd.)的研发人员中村修二先生(ShujNakamura)於1994年和1995年,在氮化镓(GaN)研究方面获得重大突破,并取得震惊全球的专利。

这位研发人员的重大突破,引发了包括Sony及Toshiba等大厂的最高主管都出面为自己所做的错误决策导致技术落後而道歉。

这位Nakamura的技术突破,让氮化镓(GaN)阵营正式快速超越SiC。

原本做荧光粉业务的Nichia由於在蓝光LED技术上的成功,使其年营业额从约1亿美元快速发展到2003年的9亿美元。

而原本该公司准备发给Nakamura的专利奖励金是日币200万元,经过一场官司後,Nichia被判定应该给这位研究人员日币2亿元。继蓝光LED技术突破後,白光LED正式启动了广泛的LED应用风潮,从显示、指示及手机光源,到正在酝酿中的LCD-TV背光源,各种新机会的大门不断被创意敲开。LED是继1950年代矽(Si)半导体技术後,由三五族(III-V族)化合物半导体发展的半导体器件。LED的发光原理是利用半导体中的电子和空穴结合而发出光子,不同於灯泡需要在3000度以上的高温下操作,也不必像日光灯需使用高电压激发电子束,LED和一般的电子元件相同,只需要2-4V的电压,在常温下就可以正常动作,因此其寿命也比传统光源来得更长。LED所发出的颜色,主要是取决於电子与空穴结合所释放出来的能量高低,也就是由所用的半导体材料的能隙所决定。

同一种材料的波长都很接近,因此每一颗LED的光色都很纯正,与传统光源都混有多种颜色相比,LED可说是一种数字化的光源。

LED晶片大小可以因用途而随意切割,常用的大小为0.3-1.0mm左右,跟传统的灯泡或日光灯相比,体积相对小得多。为了使用方便,LED通常都使用树脂包装,做成5mm左右的各种形状,十分坚固耐震。

6. 最早的二极管

EM2是整流二极管。

二极管是用半导体材料(硅、硒、锗等)制成的一种电子器件。它具有单向导电性能,即给二极管阳极和阴极加上正向电压时,二极管导通。当给阳极和阴极加上反向电压时,二极管截止。因此,二极管的导通和截止,则相当于开关的接通与断开。

二极管是最早诞生的半导体器件之一,其应用非常广泛。特别是在各种电子电路中,利用二极管和电阻、电容、电感等元器件进行合理的连接,构成不同功能的电路,可以实现对交流电整流、对调制信号检波、限幅和钳位以及对电源电压的稳压等多种功能。

7. 二极管的演变历史

电子二极管,也叫真空二极管。只具有一个阴极与一个阳极(板极)的电子管。它是靠被灯丝加热的阴极发射电子导电的,因为灯丝有热损耗,所以效率比半导体二极管低。

  电子管的发展又是电子工业发展的起点。世界上第一只电子管是英国弗莱明发明的二极管。1882年,弗莱明曾担任爱迪生电光公司技术顾问。1884年,弗莱明出访美国时拜会了爱迪生,共同讨论了电发光的问题。爱迪生向弗莱明展示了一年前他在进行白炽灯研究时,发现的一个有趣现象(人们称之为爱迪生效应):把一根电极密封在碳丝灯泡内,靠近灯丝,当电流通过灯丝使之发热时,金属板极上就有电流流过。爱迪生进一步试验让板极通过电流计与灯丝的阳极相连时有电流,而与灯丝阴极相连时则没有电流。

  弗莱明对这一现象非常感兴趣,回国后,他对此进行了一些研究,认为:在灯丝板极之间的空间是电的单行路。

  1896年,马可尼无线电报公司成立,弗莱明被聘为顾问。在研究改进无线电报接收机中的检波器时,他就设想采用爱迪生效应进行检波。弗莱明在真空玻璃管内封装入两个金属片,给阳极板加上高频交变电压后,出现了爱迪生效应,在交流电通过这个装置时被变成了直流电。弗莱明把这种装有两个电极的管子叫作真空二极管,它具有整流和检波两种作用,这是人类历史上第一只电子器件。弗莱明将此项发明用于无线电检波,并于1904年11月16日在英国取得专利。

顶一下
(0)
0%
踩一下
(0)
0%