返回首页

光电二极管可产生的最大光电流(光电二极管光电流方向)

来源:www.haichao.net  时间:2022-12-22 15:17   点击:156  编辑:admin   手机版

1. 光电二极管光电流方向

二极管具有单向导电性,所以正向,可以认为是小电阻或者说是无电阻,反向是超大电阻。

原理是因为二极管是有两种性质不同的半导体,拼结而成的,怎么说呢,一种半导体,含有很多允许自由电子通过的空穴,但自己却含有很少的自由电子叫P型半导 体,而另一种则是还有较多自由电子,但却因此缺乏容纳电子的空穴叫N型半导体。。。

如果正向加电压,电子从N向P移动,这样因为N有大量自由电子,P有大 量允许电子通过的空穴空穴,这样电子很顺利的就过去了,电阻小,而反接就不一样了,由于流动的不顺畅,在拼接处,P的电子堆积,而N的拼接处电子流失,导 致产生了一个和电源相反的电动势,平衡后就不会在产生电流了,不过电压足够大,这个平衡就不会打破,也就体现了单向通电

2. 光电二极管输出电流

光电二极管在一般照度的光线照射下,所产生的电流叫光电流。如果在外电路上接上负载,负载上就获得了电信号,而且这个电信号随着光的变化而相应变化

光电二极管是将光信号变成电信号的半导体器件。它的核心部分也是一个PN结,和普通二极管相比,在结构上不同的是,为了便于接受入射光照,PN结面积尽量做的大一些,电极面积尽量小些,而且PN结的结深很浅,一般小于1微米。

  光电二极管是在反向电压作用之下工作的。没有光照时,反向电流很小(一般小于0.1微安),称为暗电流。当有光照时,携带能量的光子进入PN结后,把能量传给共价键上的束缚电子,使部分电子挣脱共价键,从而产生电子---空穴对,称为光生载流子。

3. 二极管发光电流方向

发光二极管导通时它的正向电流较大,在同等电压的情况下发工二极管的反向电流非常小,所以发光二极管和普通二极管一样具有单向导通性,灯发光二极管单向导通时,发光二极管内部的半导体发光材料发出光来消耗电能,这就是发光二极管单向导通的功效。

4. 光电管的电流方向

光电效应是物理学中一个重要而神奇的现象。在高于某特定频率的电磁波照射下,某些物质内部的电子会被光子激发出来而形成电流,即光生电。光电现象由德国物理学家赫兹于1887年发现,而正确的解释为爱因斯坦所提出。科学家们在研究光电效应的过程中,物理学者对光子的量子性质有了更加深入的了解,这对波粒二象性概念的提出有重大影响。

光电效应中电子的方向不完全是定向的,所以它和光的方向有可能相反也有可能相同。

5. 光电二极管的电流方向

晶体二极管为一个由p型半导体和n型半导体形成的p-n结,在其界面处两侧形成空间电荷层,并建有自建电场。

当不存在外加电压时,由于p-n 结两边载流子浓度差引起的扩散电流和自建电场引起的漂移电流相等而处于电平衡状态。

当外界有正向电压偏置时,外界电场和自建电场的互相抑消作用使载流子的扩散电流增加引起了正向电流。电流方向和电场方向相反。

6. 光敏二极管产生光电流的方向

光敏二极管也是由一个PN结组成的半导体器件,也具有单向导电特性。它在电路中的符号是:光敏二极管的重要特性就是把光能转换成电能。在没有光照时,光敏二极管的反向电阻很大,反向电流很微弱,称为暗电流。当有光照时,光子打在pn结附近,于是在pn结附近产生电子-空穴对,它们在pn结内部电场作用下作定向运动,形成光电流。光照越强,光电流越大。光的变化引起光电二极管电流变化,这就可以把光信号转换成电信号,成为光电传感器件。

光敏二极管在应用电路中的两种工作状态:1、光敏二极管施加有外部反向电压当光敏二极管加上反向电压时,管子中的反向电流随着光照强度的改变而改变,光照强度越大,反向电流越大,大多数都工作在这种状态。2、光敏二极管不施加外部工作电压光敏二极管上不加电压,利用P-N结在受光照时产生正向电压的原理,把它用作微型光电池。这种工作状态,通常用作光电检测器。

7. 光电二极管输出的是电流还是电压

光电二极管的输出电流要用I-V放大器放大。

由于画图不便,你可以上网找。它的放大倍数不同于普通的电压放大器。一般小型光电二极管在无光照时电流不到1微安,有光照的时候电流时几百个微安到数毫安。放大用的电阻可以分别取1M欧、1k欧。也可以根据实际的器件定。

8. 光电二极管的电流方程

响应率

一个硅光电二极管的响应特性与突发光照波长的关系响应率(responsivity)定义为光电导模式下产生的光电流与突发光照的比例,单位为安培/瓦特(A/W)。响应特性也可以表达为量子效率(Quantum efficiency),即光照产生的载流子数量与突发光照光子数的比例。

暗电流

在光电导模式下,当不接受光照时,通过光电二极管的电流被定义为暗电流。暗电流包括了辐射电流以及半导体结的饱和电流。暗电流必须预先测量,特别是当光电二极管被用作精密的光功率测量时,暗电流产生的误差必须认真考虑并加以校正。

等效噪声功率

等效噪声功率(英语:Noise-equivalent power, NEP)是指能够产生光电流所需的最小光功率,与1赫兹时的噪声功率均方根值相等。与此相关的一个特性被称作是探测能力(detectivity, D),它等于等效噪声功率的倒数。等效噪声功率大约等于光电二极管的最小可探测输入功率。

当光电二极管被用在光通信系统中时,这些参数直接决定了光接收器的灵敏度,即获得指定比特误码率(bit error rate)的最小输入功率。

顶一下
(0)
0%
踩一下
(0)
0%