1. 数字集成电路设计原理与应用
这个专业考研选择还是挺多的,本专业有模拟集成电路设计方向、数字集成电路设计方向、射频集成电路设计方向、混合信号集成电路设计方向、微电子器件方向、集成电路工艺方向、人工智能算法方向。此外电气工程方向、电子方向、通信方向、软件开发、计算机、自动化都可以跨考。
2. 数字集成电路设计原理与应用就业方向
就业前景比较好,薪资待遇非常高。该专业毕业后主要是从事集成电路研发设计、生产销售等相关工作,能够在集成电路生产企业担任芯片设计工程师、研发工程师、销售主管、运营维护经理等相关职务,具有广阔的就业途径和良好的职业发展前途。
3. 数字集成电路设计原理与应用选择题
华南师范大学集成电路还可以
华师大集成电路方向的研究生分布在通信与电子工程学院,专硕085400电子信息中的02集成电路工程。电子系的导师可以从学院中查找,导师的情况以及研究方向都可以看到,这为以后研究的方向能有个大致情况。集成电路工程专硕初试专业课为901数字电路,复试笔试科目为半导体器件物理+集成电路原理与设计。
4. 数字集成电路设计原理与应用学什么
专业基础课和专业课包括C/C++语言、数据结构与程序设计、Verilog、电路分析基础、模拟电子线路基础、数字电路与系统设计基础、计算机语言与程序设计、计算机组成与系统结构、微机原理与应用、数字信号处理、半导体器件电子学、集成电路原理与设计、集成电路工艺技术、硬件描述语言、集成电路EDA技术、嵌入式系统原理与设计、信号与系统、通信系统原理、自动控制原理、计算机控制技术、版图设计、低功耗设计等。课程体系能够使学生既具有坚实宽广的理论基础,同时又具有较强的应用开发和创新能力。
5. 数字集成电路设计原理与应用答案
芯片,又称微电路(microcircuit)、微芯片(microchip)、集成电路(英语:integrated circuit, IC)。是指内含集成电路的硅片,体积很小,常常是计算机或其他电子设备的一部分。
芯片一般是指集成电路的载体,也是集成电路经过设计、制造、封装、测试后的结果,通常是一个可以立即使用的独立的整体。“芯片”和“集成电路”这两个词经常混着使用,比如在大家平常讨论话题中,集成电路设计和芯片设计说的是一个意思,芯片行业、集成电路行业、IC行业往往也是一个意思。实际上,这两个词有联系,也有区别。
集成电路实体往往要以芯片的形式存在,因为狭义的集成电路,是强调电路本身,比如简单到只有五个元件连接在一起形成的相移振荡器,当它还在图纸上呈现的时候,我们也可以叫它集成电路,当我们要拿这个小集成电路来应用的时候,那它必须以独立的一块实物,或者嵌入到更大的集成电路中,依托芯片来发挥他的作用;集成电路更着重电路的设计和布局布线,芯片更强调电路的集成、生产和封装。而广义的集成电路,当涉及到行业(区别于其他行业)时,也可以包含芯片相关的各种含义。
芯片与集成电路的联系与区别
芯片也有它独特的地方,广义上,只要是使用微细加工手段制造出来的半导体片子,都可以叫做芯片,里面并不一定有电路。比如半导体光源芯片;比如机械芯片,如MEMS陀螺仪;或者生物芯片如DNA芯片。在通讯与信息技术中,当把范围局限到硅集成电路时,芯片和集成电路的交集就是在“硅晶片上的电路”上。芯片组,则是一系列相互关联的芯片组合,它们相互依赖,组合在一起能发挥更大的作用,比如计算机里面的处理器和南北桥芯片组,手机里面的射频、基带和电源管理芯片组。
现在,市面上的芯片大多数指的是内含集成电路的硅片,体积很小,常常是计算机或其他电子设备的一部分。而芯片组,是一系列相互关联的芯片组合。它们相互依赖,组合在一起能发挥更多作用,比如,计算机里的中央处理器(CPU)及手机中的射频、基带和通信基站里的模数转换器(ADC)等,就是由多个芯片组合在一起的更大的集成电路。
由于芯片是精密度要求非常高仪器,度量单位是以纳米来计算的,对制作工艺要求非常严格。虽然我国在近几年在科技领域还是取得不菲的成绩,但是在一些核心的、关键领域一直都还处于比较弱势的阶段。比如中国在存储器、CPU、FPG及高端的模拟芯片、功率芯片等领域,几乎是没有的。如果中国发力研发,在某些小的门类中可能会有所突破。”
制造一颗芯片到底有多难?
制作一颗芯片的生产线是非常复杂的,大约会涉及到五十个行业、2000-5000个工序。就拿代工厂来说,需要先将“砂子”提纯成硅,再切成晶元,然后加工晶元。晶元加工厂包含前后两道工艺,前道工艺分几大模块——光刻、薄膜、刻蚀、清洗、注入;后道工艺主要是封装——互联、打线、密封。其中,光刻是制造和设计的纽带。
其中许多工艺都在独立的工厂进行,而使用的设备也需要专门的设备厂制造;使用的材料包括几百种特种气体、液体、靶材,都需要专门的化工工业。另外,集成电路的生产都是在超净间进行的,因此还需要排风和空气净化等系统。
芯片研制的流程
芯片制作完整过程包括芯片设计、晶片制作、封装制作、测试等几个环节,其中晶片制作过程尤为的复杂。首先是芯片设计,根据设计的需求,生成的“图样”。然后还得经过以下工艺方可将芯片制造出来。
1、 芯片的原料晶圆
晶圆的成分是硅,硅是由石英沙所精练出来的,晶圆便是硅元素加以纯化(99.999%),接着是将这些纯硅制成硅晶棒,成为制造集成电路的石英半导体的材料,将其切片就是芯片制作具体所需要的晶圆。晶圆越薄,生产的成本越低,但对工艺就要求的越高。
2、晶圆涂膜
晶圆涂膜能抵抗氧化以及耐温能力,其材料为光阻的一种。
3、晶圆光刻显影、蚀刻
该过程使用了对紫外光敏感的化学物质,即遇紫外光则变软。通过控制遮光物的位置可以得到芯片的外形。在硅晶片涂上光致抗蚀剂,使得其遇紫外光就会溶解。这时可以用上第一份遮光物,使得紫外光直射的部分被溶解,这溶解部分接着可用溶剂将其冲走。这样剩下的部分就与遮光物的形状一样了,而这效果正是我们所要的。这样就得到我们所需要的二氧化硅层。
4、掺加杂质
将晶圆中植入离子,生成相应的P、N类半导体。
具体工艺是是从硅片上暴露的区域开始,放入化学离子混合液中。这一工艺将改变搀杂区的导电方式,使每个晶体管可以通、断、或携带数据。简单的芯片可以只用一层,但复杂的芯片通常有很多层,这时候将这一流程不断的重复,不同层可通过开启窗口联接起来。这一点类似多层PCB板的制作原理。 更为复杂的芯片可能需要多个二氧化硅层,这时候通过重复光刻以及上面流程来实现,形成一个立体的结构。
5、晶圆测试
经过上面的几道工艺之后,晶圆上就形成了一个个格状的晶粒。通过针测的方式对每个晶粒进行电气特性检测。一般每个芯片的拥有的晶粒数量是庞大的,组织一次针测试模式是非常复杂的过程,这要求了在生产的时候尽量是同等芯片规格构造的型号的大批量的生产。数量越大相对成本就会越低,这也是为什么主流芯片器件造价低的一个因素。
6、封装
将制造完成晶圆固定,绑定引脚,按照需求去制作成各种不同的封装形式,这就是同种芯片内核可以有不同的封装形式的原因。比如:DIP、QFP、PLCC、QFN等等。这里主要是由用户的应用习惯、应用环境、市场形式等外围因素来决定的。
7、测试、包装
经过上述工艺流程以后,芯片制作就已经全部完成了,这一步骤是将芯片进行测试、剔除不良品,以及包装。
综述:尽管我国的芯片技术与欧美等顶尖技术还有差距,这个必须清醒认识到,目前而言,我国的芯片产业发展迅速,与国家的重视密不可分。但是由于芯片是属于产业链上端的,缺顶层人才和技术积累,这个方面还需要继续努力,尤其是顶尖芯片研发人员,培养的同时不断完善薪资体制,让更多优秀人才在中国实现“芯片梦”。
6. 数字集成电路设计原理与应用课后答案
集成电路设计与集成系统专业工资待遇 截止到2013年12月24日,57740位集成电路设计与集成系统专业毕业生的平均薪资为4639元,其中应届毕业生工资3701元,0-2年工资4104元,10年以上工资5104元,3-5年工资6069元,8-10年工资10494元,6-7年工资11198元。 集成电路设计与集成系统专业就业方向 集成电路设计与集成系统专业学生毕业后可到国内外各通信、雷达、电子对抗等电子系统设计单位和微电子产品的单位从事微电子系统的研发设计。。 集成电路设计与集成系统专业就业岗位 硬件工程师、电气工程师、模拟集成电路设计工程师、研发工程师、射频集成电路设计工程师、设计工程师、等。 集成电路设计与集成系统专业就业地区排名 集成电路设计与集成系统专业就业岗位最多的地区是上海。薪酬最高的地区是肇庆。 就业岗位比较多的城市有:上海[36个]、北京[30个]、深圳[28个]、苏州[11个]、西安[10个]、武汉[9个]、广州[7个]、成都[6个]、无锡[6个]、济南[6个]等。 就业薪酬比较高的城市有:肇庆[8065元]、信阳[6999元]、北京[6279元]、上海[6194元]、佛山[5265元]、厦门[5231元]、杭州[5024元]、南京[5013元]、惠州[4999元]、沈阳[4867元]、大连[4799元]等。 集成电路设计与集成系统专业在同类专业排名 集成电路设计与集成系统专业在专业学科中属于工学类中的电气信息类,其中电气信息类共34个专业,集成电路设计与集成系统专业在电气信息类专业中排名第28,在整个工学大类中排名第95位。 在电气信息类专业中,就业前景比较好的专业有:计算机科学与技术,自动化,软件工程,信息工程,电气工程及其自动化,网络工程,计算机软件,电子信息工程,通信工程等。现在大学生就业形势越来越严峻,在填报志愿时,如果不是特别喜欢某一专业的话,选一个好就业的专业就显得尤为重要了,最好就业的专业排名是很多考生和家长朋友们关心的问题,下面小编带来2016年十大就业率最好专业希望对您有所帮助。
7. 数字集成电路设计原理与应用教材
学长口述 985硕士,上海工作40w年薪以上。
集成电路设计目前三个方向:数电,模电,射频设计。其中数电相对简单,市场竞争压力大。由于国家大力宣传发展集成电路导致许多专科、培训机构也开设了集成电路(数电为主),集电硕士增多,所以就业压力较大。模电射频难度大,门槛高,类似公务员,铁饭碗不易被炒。15k月薪*14的工资,朝九晚五,有双休,每年有带薪休假时间。总体来说,集成电路属于硬件设计,入门难,相比计算机行业就业压力小了不少,工资待遇比传统行业高。补充一下,华为 海思的麒麟芯片就是集成电路(ic),华为每年批发收985硕士,收入可观。
8. 数字集成电路设计原理与应用试题及答案
比如数字集成电路设计de抽象级别:系统级(system), 算法级(algorithm),寄存器级(register transfer),逻辑级(logic),电路级(circuit).版图级(layout),物理级(physics)。 微电子主要设计从逻辑级到版图级。 电科主要设计从系统级到逻辑级。 固体电子技术主要研究物理级,开发新材料、新器件。 集成电路设计与集成系统的想干啥干啥,都行。 这几个专也很多专业课都重叠。只是侧重略有不同。想要当一个优秀的电子工程师需要什么都了解一些。实际经验要丰富。
9. 数字集成电路设计原理与应用第二版思维导图
我来自西北工业大学计算机学院微电子学研究所,现在是微电子学研究所的研一学生,专业方向是数字集成电路设计。在研一上学期,初步掌握了数字集成电路后端综合设计方法,本篇学术素养课程报告主要讨论在实现后端流程时的方法、经验、以及相关的感悟。 一般而言,软件工程师的需求量和硬件工程师的需求量是10:1,也就是说硬件工程师需求量远小于软件工程师,硬件工程师中又分为模拟和数字两大类,模拟集成电路设计主要包括ADC、DAC、PLL等,数字集成电路设计则更偏向于实现特定功能的芯片,如CPU、GPU、MCU、MPU、DSP等。 事实上,发展到现阶段,数字集成电路的设计方法已经在EDA工具的帮助之下十分类似于软件开发了,典型的数字集成电路开发一般为以下步骤: 1、根据需求,自顶向下设计电路模块,明确该数字系统需要实现什么功能,再具体细分到各个功能模块。此时的设计图形式一般为模块框图,使用visio或其他绘图软件实现。这个环节较为松散,但十分重要,因为根据需求设计大的模块和指标时,必须要结合实际情况,否则到后期会经历无限次返工甚至无法达到预定指标。一般由德高望重,经验丰富的工程师进行总体设计。 2、定义好各个模块之后,接下来就是具体实现各个模块的功能。因为硬件描述语言的存在,我们可以很轻易的通过硬件描述语言来“写”出模块的实现方法,在本次实验中,我使用的是Verilog HDL。具体代码的复杂程度和模块的复杂程度有关,我在这次实验中采用的是“八位格雷码计数器”电路设计。 3、完成“八位格雷码计数器”的Verilog代码后,需要对该设计进行“前仿真”。所谓前仿真,主要是为了验证代码是否描述正确,是否真正实现了所规划的功能。一般使用modelsim软件进行仿真,仿真成功进入下一阶段,不成功则需要返回修改代码。 4、前仿真成功后,已经有了功能正确的Verilog设计代码,此时可以将代码下载到FPGA板上进行验证(Quartus,JTAG),验证成功则证明此设计正确无误。对于某些集成度要求不高且时间非常紧张的数字电路设计项目,可以直接使用FPGA来实现芯片功能。显然,FPGA这种通用器件是不能满足高集成、低功耗、专用性高ASIC设计需求的,只能用于较为简单和粗犷的设计。 5、接下来进入后端流程。这时需要专用的服务器以及价格高昂的EDA工具支持。这也是为什么硬件设计入门较难的原因之一,如果一个没有接触过软件编程的有志青年立志做软件工程,一般一台电脑,一本书就够了,最多再买个正版编译器(VS,Eclipse,DW等),但是要做硬件电路设计,一台电脑一本书最多画画PCB。要做最核心的部分,必须使用功能强大的服务器和价格昂贵的EDA工具,因为普通的PC电脑负担不起“后端综合”的工作需求。而且大量linux下的复杂操作也会使人望而却步。 6、准备好后端平台后,就可以将“八位格雷码计数器”放到平台里,这时马上需要考虑的问题是使用什么元件库以及什么工艺?因为同样一个与非门,不同元件库有不同实现细节,MOS管细节可能都大相径庭,另外还要考虑工艺,这些工艺的文件来自于相关厂家(TSMC,CSMS等),这也是个人无法做后端的原因之一——因为你几乎不可能以自己的名义向台积电商量工艺库文件,毕竟作为一个涉世未深,无钱无术的初学者,你是无法充满自信的和人数上万、资金上亿的工艺厂签合同的。经过精心筛选后(更多情况下是没得选),确定你想使用的工艺。在本次实验中,我使用的是实验室学长改良过的元件库,以及TSMC 0.18um工艺,EDA工具为Cadence IC 614。 7、经过一系列配置之后,“八位格雷码计数器”已经成为了一个庞大的工程文件,我建议采用TCL脚本文件进行配置。然后就可以进行RTL级综合。所谓RTL级综合,实际上是指将Verilog代码“改写”为综合工具(我使用的是Encounter)所能识别的Verilog代码。通俗的讲,这个类似于将“文言文”翻译为“白话文”,也类似于C语言中的“编译”,即将高级语言翻译为汇编代码。当然,理论上可以直接写出RTL级代码,但这就和直接写汇编语言一样,复杂程度不言而喻。 8、RTL级综合完成后,接下来将RTL Verilog导入Encounter进行真正的后端综合。导入RTL代码后,还需要说明标准单元库的LEF文件,并定义电源和地的线名。此时需要一个MMMC config配置,流程繁杂,主要是配置相关文件和器件状态(TT、SS、FF等)。 9、完成导入配置,接下来是芯片布局设计,即Floorplan。Floorplan需要设置一些基础参数,如芯片的长宽(面积),留给管脚的空间,芯片利用率等。长宽比建议为0.2-5,复杂电路利用率0.85,一般电路利用率0.90,简单电路利用率0.95。 10、POWER计算,以此为根据布置电源线路,主要为ring和stripe。例如,某数字电路芯片功耗为55mW,增加冗余量到2倍左右,设计为100mW,按照1.8V供电,电流约为60mA,也就是总电源线为60u,如果每条线10u,则六条电源线,两侧各一条,中间四条。Encounter中有专门的布线配置器。布线之后,可以先Apply,然后撤销反复尝试。 11、布置IO管脚。如果提前没有导入IO,可以重新导入(TCL),也可以自行调整。 12、Pre-Place,因为Verilog中往往有很多的module,每个module对应一个布局模块,布局时应当注意一些布局原则。布局时一般通过简单的拖动就可以。“八位格雷码计数器”因为只有一个module,因此不需要复杂的布局。 13、布局是一个不断修改和改进的过程,Pre-Place之后进行Place,之后进行之后Post-Place。Place之后,需要进行时钟树综合(CTS),时钟树综合的目的是为了让每个信号都在约束的时间内传输到下一个时序单元,否则会对芯片的主频产生影响(主频是在设计前就定下来的指标),然后在Post-CTS对不符合时钟约束的部分进行布线调整。 14、布局之后进行布线,即Route,对于特殊还布线需要进行SRoute,然后进行Post-Place,这些步骤某种程度上都是“点按钮”和“配参数”,但后端综合时一定要有清醒的头脑,必须知道为什么要点这些按钮,以及该配置什么参数。 15、布局布线经过多次迭代,IO管脚配置好后,可以Fill全图,用各层金属覆盖未使用的区域。单个“八位格雷码计数器”因为结构简单,芯片未覆盖区域较大。 16、至此,Encounter内的后端综合就完成了,可以导出(export)成GDSII格式的网表,以及为了做DRC,LVS检查,也需要“Netlist”成schematic(电路原理图)的格式。 17,将后端综合的GDSII文件导入(Stream in)到Virtuoso里。Virtuoso是一个用于模拟集成电路设计的软件。将GDSII文件导入该软件主要有两个目的,一是可以在Virtuoso里做“后仿真”,验证经过后端综合的一系列流程之后,概念芯片是否能满足设计需求,此时的仿真就已经考虑到了延时,电阻,功耗等实际存在的问题,如果仿真时出现了问题,需要进行返工修改,必要时要重新布局布线。当“后仿真”通过后,还要对该芯片进行DRC和LVS检查,DRC是查看是否满足所选工艺的要求,因为在实际情况下,一些理论上的值是不现实的,比如过细的线无法生产,栅极间的距离过短可能会导致短路,导线和各金属层之间的电容会影响电路功能等。LVS是比较layout和Schematic之间的拓扑关系是否不一致。二是可以方便以后做数模混合芯片设计时进行混合设计,因为模拟集成电路的是直接在Virtuoso中进行的,两者最后结合在一起,就可以进行数模混合集成电路设计。 18、进行完检查之后,就可以与工艺提供厂家联系进行加工了,如TSMC。一般加工需要跟上企业的业务流程。大约经过1月左右,芯片加工完成,然后进入测试环节。焊接,试验,验证芯片指标,以及提出改进方案。 至此,一个数字集成电路从概念到实物的整个流程就完成了,每一步都值得研究和回味,从二四译码器到复杂的CPU,其流程是基本一样的。经过研一上一个学期的学习,我也基本掌握了这个流程。以后会更加努力的在本专业方向继续前进,培养核心竞争力。