1. 多种信号发生器
发生器的常见种类
正弦信号发生器、低频信号发生器、高频信号发生器、微波信号发生器、扫频和程控信号发生器、频率合成式信号发生器、 函数发生器、脉冲信号发生器、随机信号发生器、 噪声信号发生器、伪随机信号发生器。
信号发生器的主要特点
1、具有良好的长期稳定性。
2、具有步进、连续输出和设定、存储功能。
3、具有输出过载指示、电池容量指示和自动关机功能。
4、全功能自我保护,有效克服误操作。
5、提供24V现场仪表电源。
2. 多种信号发生器知乎
目前对这种设备进行分类的时候主要就是有两大类,一类是任意的波形都能够产生的设备,另外一种就是混合类型信号的一种设备。信号发生器这几年经过不断的发展还产生了一种类型,就是可以根据某些函数的形状来产生相应的波形。那么这些设备当然就各有各的用途,然后各有各的优势,在某些特定的场合有一些类型的设备还用得非常的普遍。下面就来为大家简单介绍一下这些设备的情况。
信号发生器现在给大家介绍一下模拟信号产生设备,那么这种设备的话,产生的这些信号全部都是真实的,全部都是模拟信号,也就是说里面不掺杂一些数字化的东西。往往这种模拟信号同时也是一种混合的信号,因为在模拟信号里面可能会有很多的杂波,也可能会呈现出一些不规律的情况,那这就是一种混合的信号。这种模拟的设备几乎可以产生任何类型的信号,而且这些信号基本都是可以进行分解的。接下来就是根据某些函数来产生相应的波形,那我们知道一旦涉及到了函数的函数一旦涉及到了任意的波形,那就需要涉及到数字化,就要涉及到编程。所以往往这种根据某些函数产生的波形是非常平滑的,即便是放大之后也不会看到这些波形上面有毛刺,但如果是模拟信号的话就会有很多的毛刺。
信号发生器接下来还有一种就是属于能够产生任意波形的设备。这种设备运行起来比较复杂,里面有一整套的运转的逻辑,比如说先产生一个信号,然后这个信号和标准呢,我们所需要的信号来进行对比,如果对比有差异的话,那么再返回发生装置,然后再由这个设备对这个差异部分来进行补偿,那么补偿完毕了之后再一次生成一个波形,然后再用这个波形和目标波形来进行对比,直到满足一定的误差标准之后,那么这个波形就是我们所需要的这种波形。这个原理是不是有点像搞素描的时候反复的在进行描绘的那种原理呢?其实就是差不多的一种原理。只不过这个流程全部都是程序来进行控制的,可以在一瞬间就迅速产生我们所需要的波形图。
3. 多种信号发生器知乎keil仿真
怎样测量芯片好坏
1. 检查供电:直接用万用表测量VCC和GND的电平,是否符合要求。如果VCC偏离5V或3.3V过多,检查7805或其他稳压、滤波电路的输出。
2. 检查晶振…… 这个我也不知道怎么检查晶振好坏,我的方法比较土:一般是多换几个晶振上电试试,反正石英晶振不值很多钱:)
3. 检查RESET引脚电平逻辑,注意所用机型是高电平复位还是低电平复位的,如果MCU一直处于反复被复位状态,呵呵,结果不言而喻。
4. 如果设计时,程序是从扩展的外部ROM开始运行的,还需检查EA脚。
5. 检查MCU是否损坏或flash无法下载,最好换块新的芯片试试。
6. 如果确定上述几点都没问题,按道理说硬件是应该正常运行的了(为了防止万一,也可以写一段较简短的并口亮灯程序测试下最小系统)……如果测试程序运行正常。那就基本确定是控制程序的问题了,在keil里反复跟踪调试程序,留意调用子程序后工作寄存器组、累加器、DPTR等是否为预期值。
如何判断ic芯片的好坏
一、不在路检测
这种方法是在ic未焊入电路时进行的,一般情况下可用万用表测量各引脚对应于接地引脚之间的正、反向电阻值,并和完好的ic进行 较。
二、在路检测
这是一种通过万用表检测ic各引脚在路(ic在电路中)直流电阻、对地交直流电压以及总工作电流的检测方法。这种方法克服了代换试验法需要有可代换ic的局限性和拆卸ic的麻烦,是检测ic最常用和实用的方法。
2.直流工作电压测量
这是一种在通电情况下,用万用表直流电压挡对直流供电电压、外围元件的工作电压进行测量;检测ic各引脚对地直流电压值,并与正常值相 较,进而压缩故障范围, 出损坏的元件。测量时要注意以下八 :
(1)万用表要有足够大的内阻, 少要大于被测电路电阻的10倍以上,以免造成较大的测量误差。
(2)通常把各电位器旋到中间位置,如果是电视机,信号源要采用标准彩条信号发生器。
3)表笔或探头要采取防滑措施。因任何瞬间短路都容易损坏ic。可采取如下方法防止表笔滑动:取一段自行车用气门芯套在表笔尖上,并长出表笔尖约0.5mm左右,这既能使表笔尖良好地与被测试点接触,又能有效防止打滑,即使碰上邻近点也不会短路。
(4)当测得某一引脚电压与正常值不符时,应根据该引脚电压对ic正常工作有无重要影响以及其他引脚电压的相应变化进行分析, 能判断ic的好坏。
(5)ic引脚电压会受外围元器件影响。当外围元器件发生漏电、短路、开路或变值时,或外围电路连接的是一个阻值可变的电位器,则电位器滑动臂所处的位置不同,都会使引脚电压发生变化。
(6)若ic各引脚电压正常,则一般认为ic正常;若ic部分引脚电压异常,则应从偏离正常值最大处入手,检查外围元件有无故障,若无故障,则ic很可能损坏。
(7)对于动态接收装置,如电视机,在有无信号时,ic各引脚电压是不同的。如发现引脚电压不该变化的反而变化大,该随信号大小和可调元件不同位置而变化的反而不变化,就可确定ic损坏。
(8)对于多种工作方式的装置,如录像机,在不同工作方式下,ic各引脚电压也是不同的。
3.交流工作电压测量法
为了掌握ic交流信号的变化情况,可以用带有db插孔的万用表对ic的交流工作电压进行近似测量。检测时万用表置于交流电压挡,正表笔插入db插孔;对于无db插孔的万用表,需要在正表笔串接一只0.1~0.5μf隔直电容。该法适用于工作频率 较低的ic,如电视机的视频放大级、场扫描电路等。由于这些电路的固有频率不同,波形不同,所以所测的数据是近似值,只能供参考。
4.总电流测量法
该法是通过检测ic电源进线的总电流,来判ic好坏的一种方法。由于ic内部绝大多数为直接耦合,ic损坏时(如某一个pn结击穿或开路)会引起后级饱和与截止,使总电流发生变化。所以通过测量总电流的方法可以判 ic的好坏。也可用测量电源通路中电阻的电压降,用欧姆定律计算出总电流值。
4. 多种信号发生器摘要
信号发生器用来产生频率为20Hz~200kHz的正弦信号(低频)。除具有电压输出外,有的还有功率输出。所以用途十分广泛,可用于测试或检修各种电子仪器设备中的低频放大器的频率特性、增益、通频带,也可用作高频信号发生器的外调制信号源。另外,在校准电子电压表时,它可提供交流信号电压。低频信号发生器的原理:系统包括主振级、主振输出调节电位器、电压放大器、输出衰减器、功率放大器、阻抗变换器(输出变压器)和指示电压表。
5. 多种信号发生器原理图
凡是产生测试信号的仪器,统称为信号源,也称为信号发生器,它用于产生被测电路所需特定参数的电测试信号。
在测试、研究或调整电子电路及设备时,为测定电路的一些电参量,如测量频率响应、噪声系数,为电压表定度等,都要求提供符合所定技术条件的电信号,以模拟在实际工作中使用的待测设备的激励信号。当要求进行系统的稳态特性测量时,需使用振幅、频率已知的正弦信号源。当测试系统的瞬态特性时,又需使用前沿时间、脉冲宽度和重复周期已知的矩形脉冲源。并且要求信号源输出信号的参数,如频率、波形、输出电压或功率等,能在一定范围内进行精确调整,有很好的稳定性,有输出指示。 信号源可以根据输出波形的不同,划分为正弦波信号发生器、矩形脉冲信号发生器、函数信号发生器和随机信号发生器等四大类。正弦信号是使用最广泛的测试信号。这是因为产生正弦信号的方法比较简单,而且用正弦信号测量比较方便。正弦信号源又可以根据工作频率范围的不同划分为若干种。一、低频信号发生器的工作原理 低频信号发生器用来产生频率为20hz~200khz的正弦信号。除具有电压输出外,有的还有功率输出。所以用途十分广泛,可用于测试或检修各种电子仪器设备中的低频放大器的频率特性、增益、通频带,也可用作高频信号发生器的外调制信号源。另外,在校准电子电压表时,它可提供交流信号电压。 低频信号发生器的原理:系统包括主振级、主振输出调节电位器、电压放大器、输出衰减器、功率放大器、阻抗变换器(输出变压器)和指示电压表。 主振级产生低频正弦振荡信号,经电压放大器放大,达到电压输出幅度的要求,经输出衰减器可直接输出电压,用主振输出调节电位器调节输出电压的大小。
6. 多种信号发生器的作用
信号源有很多种分类方法,其中一种方法可分为混合信号源和逻辑信号源两种。
其中混合信号源主要输出模拟波形;逻辑信号源输出数字码形。混合信号源又可分为函数信号发生器和任意波形/函数发生器,其中函数信号发生器输出标准波形,如正弦波、方波等,任意波/函数发生器输出用户自定义的任意波形;
7. 多种信号发生器参考文献
1 一个脉冲测量理论上可以的,但实际上1个脉冲时间太短了。
超声波发生器一般1秒发射几十到几百次,叫发射频率。每次发射的脉冲波为几个波长的波,叫脉冲频率。发射脉冲波的时间与发射和接收的时间不是同一个概念。2 你所查的文献所表述的不明确。通常的超声波测距是利用发射和接收的时间与材料中超声波波速测出的。相同条件下,1个发射频率中发出的脉冲波越多,发射的能量就越多,接收和转换的能量就越多,设备所测量的结果就越容易。你提到的文献中所提到的脉冲宽度越大是发射超声与接收超声的时间间隔,因为s=v*t ,所以测距离越大,脉冲宽度越大。3输出脉冲的个数与被测距离成正比我认为此提法的含义的理解应为:测量的距离小可以采用较短的脉冲宽度,较长的距离采用较长的脉冲宽度。这是因为如果测量的距离很长,而脉冲宽度短的话,会产生幻象波。测量的结果就成了脉冲宽度而不是实际的距离了。4被测物距离越大,脉冲宽度越大,输出脉冲的个数与被测距离成正比。在这里的意思是,距离越大,超声间隔越长,在越长的时间里发射的脉冲个数就越多啊。简直就是画蛇添足,明白的都会搞晕!哈哈 看看别的文献或书吧,你这个文献的说法太混乱了。8. 多种信号发生器里面各个电容的作用
先调中放:将信号发生器调到465Kc调制1kc正弦波,输出调在2-5mV(45db),将本振停止。从混频(变频)输入段注入信号。用毫安表接在检波(集成块一般有(DET检测输出),这里接地是常识就不讲了。
调整中周(中频变压器)使输出最大,有多级选频的由后往前调。如果是采用固态滤波器的中频不要调了。 统调:让整机工作,用信号发生器连接鞭状天线或环状天线收音机离发射天线1M。
检测检波输出,用三点频率(最低,中间,最高)调整可变电容上的垫整电容(最低、中间)、振荡变压器(最高、中间),使检波输出最大。
再调整磁棒线圈位置,依次反复调整到高、中、低都接近最大。(调整最好在屏蔽房、地下室)。
9. 多种信号发生器的原理
信号发生器内部电路一般由振荡器、放大器、输出衰减器、稳压电源及指示电压表等部分组成。
(1)振荡器 振荡信号可以由三种形式的振荡器产生。
①LC振荡器。这种振荡器由于LC体积大、频率变化范围小、品质因数Q值较小,故一般不太适合用于低频信号振荡器,一般在高频信号振荡器中使用较多。
②差频振荡器。由一稳定的基准频率振荡器与可调频率振荡器产生差频信号,此差频信号经过低频滤波、放大后作为信号源输出信号。这种振荡器频率覆盖面宽,缺点是受高频基准振荡器频率稳定性的影响很大,所以输出频率稳定性较差,在低频端尤为显著,使用时需要经常校正。
③RC振荡器。RC振荡器用电阻代替了电感器,使结构简单、紧凑,不仅降低了成本,而且还具有较高的频率稳定性,调节使用较方便,因而在低频信号发生器中被广泛地应用。典型的RC振荡器叫做文氏电桥振荡器。