1. 工业加热炉的串级控制系统的设计
主要由加热炉入口温度和加热炉负荷和决定出口的温度,控制方案由以下几种 (1)加热炉出口温度串级控制燃料气压力 (2)加热炉出口温度串级控制燃料气流量 (3)炉膛温度为控制点 (4)比较复杂的控制,计算燃料气的组成、热值,再串级控制。
2. 锅炉温度串级控制系统课程设计
锅炉汽包三冲量控制是三冲量指的是给水信号,蒸汽流量信号和汽包水位信号。相比单冲量和双冲量,(单冲量的缺点是虚假液位越来越严重,20T一下适用。双冲量较单冲量可以纠正去甲也为所引起的误动作,是控制阀的动作十分及时,从而较少水位的波动,改善控制品质。但是仍然存在两个弱点:控制阀的工作特性不一定为线性,要做到静态补偿比较困难;对于给水系统的干扰仍不能很好克服。)三冲量控制系统是一个前馈与串级控制组成的复合控制系统。给水局部反馈的作用是消除给水管线上压力波动的影响,三冲量最后都通过加法器来控制给水阀门的开度。 其他的不会了,呵呵
3. 加热炉温度串级控制系统
CFB锅炉的结构及运行方式具有自身的特殊性,其控制系统需要针对相应特点进行设计。下面分别对各控制子系统予以描述。
1 .主蒸汽压力控制
采用DEB直接能量平衡策略。控制煤粉量来保证母管蒸汽压力恒定。燃料及风量之间设有交叉限制,以保证增负荷时先加风后加煤,减负荷时先减煤后减风。对于变频控制的给粉机进行高低速的限制。控制系统输出一前馈信号至送风控制系统,使送风量能及时跟上煤量的变化,以保持适当的风煤配比。
此控制系统通过改变锅炉燃烧平衡维持机前压力恒定,当汽机负荷改变时,风量和煤量的调节协调动作,以使锅炉快速响应这一负荷变化,同时也部分补偿了负荷变化时锅炉热量的改变。
2 .床温控制
床温是CFB锅炉运行状态的重要表征参数,也是较难控制的参数之一。这是因为床温是燃料燃烧发热和床料放热综合作用的结果,而影响燃料发热和床料放热的因素较多,如燃料热值、粒度尺寸、物料流速、物料浓度、入炉风量、入炉风温以及吸热工质参数等等。
床温通过在燃烧室密相区布置多支热电偶进行测量。将多个测量值进行综合运算后得出床温表征值。为了保证循环流化床锅炉的稳定燃烧并有利于获得最佳脱硫和脱硝效果,床温最好控制在850℃至900℃之间。
对于采用高温回料系统的CFB锅炉,循环灰(回料)温度与炉内床温十分接近,循环灰量不能明显影响床温且在正常运行中不单独调整(保证返料风在正常范围时,循环灰量具有平衡能力)。影响床温的主要因素是一次风与二次风比率和燃料量。一次风为床料提供流化动力和初始燃烧氧气,但同时对密相区有明显的冷却效果;二次风为床料提供燃尽风,从不同高度送入可均衡各段床温,二次风还主要承担调节烟气含氧量的任务。燃料量直接影响炉内发热量,与锅炉负荷相适应的风煤比是决定床温的最终因素。
为达到控制床温的目的,采取串级校正调节方式。床温信号进入床温调节器与床给定值比较所得偏差经不同的函数转换后生成校正指令分别送至一次风调节器、二次风调节器和燃料调节器对其给定值进行修正,这样通过调节一、二次风的比率来实现床温调节基本满足床温控制的要求,同时一次风量的调整还必须受安全流化风量的限制。床温调节器输出信号转换函数考虑调节床温时对负荷的影响最小。
床温校正函数可参考同型锅炉预设,但需在锅炉运行后通过试验加以修正,最终达到床温调节的最佳效果。
3 .床层厚度(床压)控制
在循环流化床锅炉中,床层厚度对炉内流化状态、床温和传热效率有直接影响,锅炉一定的负荷对应一个适当的床层厚度。
床层厚度基本同床压(或料层差压)成正比。床压控制系统的任务就是通过调节排渣量维持床料厚度在适当值。
循环流化床没有明显的流化料层界面,但有密相区和稀相区之分,床层厚度是指密相区内静止时料层厚度,一定的床压(或料层差压)对应着一定的料层厚度。在运行中,料层厚度必须控制在一定的范围内。若料层太薄,一方面炉膛内传热强度低,限制锅炉出力,对锅炉稳定运行不利;另一方面炉料的保有量少,放出炉渣可燃物含量也高。若料层太厚,料层阻力必然增加,虽然锅炉运行容易控制,炉渣可燃物含量低,但增加了风机电耗。所以为了经济运行,床压(或料层差压)控制在负荷对应的适当值,运行中床压(或料层差压)超过此值,可以通过放渣来调整,放渣的原则是少放、勤放,最好能连续适量排放,一次放渣量太多,将影响锅炉的稳定运行、出力和效率。
采用床压信号作为床压调节器的测量值,同床压设定值比较后经PI调节器运算,其输出控制底渣的排放量。
4 .燃料控制
锅炉燃料量指令是由锅炉负荷指令与实际进入锅炉的总风量取小值,并经床温控制校正信号修正后获得。锅炉燃料量指令作为燃料主控的给定值,所有输入锅炉的燃煤量测量值的总和经发热量补偿运算后所得值,与燃油折算煤量之和作为反馈值,燃料主控PID输出值经分配后调整各给煤机的出力,保证总热量输入满足锅炉负荷及床温调整的要求。
在锅炉的冷态启动过程中,先启动点火燃烧器,按预定的升温曲线对启动床料加热,当床温升高到可以燃烧主燃料的程度,允许间断投运给煤机。破碎的煤粒进入炉膛燃烧,床温继续升高,当床温超过某限定值,允许停止投油,并保持合适给煤量。
对于采用气力播煤装置的系统,还需对播煤风压和风量进行调节,使之与给煤量相适应,才能实现煤粒在密相区床面上的均匀分布。
在由DEB为基础构成的燃料控制系统中,不同于其它控制策略之处在于:根据热负荷计算出来的锅炉指令在燃料调节器的入口直接同锅炉的热量指令信号比较,使热负荷与锅炉之间的能量供求关系得到快速平衡。热量信号反映锅炉内总燃料所释放的热量,用于该系统中无需精确计量燃料量,这正表明该系统对燃料的适应性很强。
本设计的燃料控制系统,同时考虑了煤和油的控制。在锅炉的冷态启动过程中,先启动床下风道燃烧器,按预定的升温曲线对启动床料加热,把床温提高到可以燃烧煤燃料的程度,少量间断投入煤粒,破碎的煤粒进入炉膛燃烧,使床温继续升高。当床温超过某限定值,就可以停止投油,并保持合适给煤量。在锅炉启动的初始阶段必须加强对床温和烟气含氧量的监视,以判断煤燃料是否真正燃烧。
5 .主蒸汽温度控制
在屏式热器喷出口至高温过热器之间管道布置二级喷水减温器。调节二级喷水量是控制主汽蒸温度最后的和最直接的手段。
典型的过热蒸汽温度控制分两级完成,通过串级方式控制一、二级喷水减温使锅炉的主蒸汽温度控制在允许范围。
第一级喷水主调节器响应二级过热器出口温度和给定值(根据锅炉负荷计算确定)之间的偏差,副调节器响应由主调节器修改的温度和一级减温器出口温度之间的偏差,为了克服负荷扰动下的过热器喷水调节过程的滞后和惯性,还将代表负荷扰动的主蒸汽流量作为前馈信号加到副调节器的给定值。一旦负荷发生变化,则提前调节减温水流量,快速消除扰动,维持二级过热器出口蒸汽温度在期望值。
第二级喷水主调节器响应末段过热器出口蒸汽温度和手动调节设定值之间的偏差,副调节器响应由主调节器修改的温度和二级减温器出口温度之间的偏差,为了克服负荷扰动下的过热器喷水调节过程的滞后和惯性,还将代表负荷扰动的主蒸汽流量作为前馈信号加到副调节器的给定值。一旦负荷发生变化,则提前调节减温水流量,快速消除扰动,提高了控制品质,确保主汽温度稳定在严格规定范围。
6 .再热器蒸汽温度控制
再热蒸汽温度的精确控制通常是通过喷水减温控制来实现的。
控制回路采用串级方式,主调节器响应再热器出口蒸汽温度和设定值之间的偏差,副调节器响应由主调节器修改的温度和减温器出口温度之间的偏差,调节减温水流量,确保再热器蒸汽温度稳定在严格规定范围。
7 .燃油压力控制
本系统采用单回路PID调节,根据燃油压力控制油泵转速维持压力正常。保证油枪进油压力满足机械雾化和出力要求。
8.总风量控制
本系统主要以产生正确的一、二次风量为目的,根据实际进入锅炉的总燃料量需要的燃烧风量与锅炉负荷要求的总风量取大值,以保证升负荷时,先增风量,后增燃料;降负荷时先降燃料,后降风量,防止燃料富余。并结合烟气含氧量的校正,和锅炉设定的最小总风量取大值作为总风量的设定值,通过与实际总风量的偏差,经总风量调节器运算后,产生锅炉总风量信号。根据此总风量信号按特定函数关系分配锅炉一次风量和二次风量的控制指令。
一次风量控制
一次风量必须保证炉膛内物料能够流化,并为燃料的燃烧提供初始燃烧空气;本系统就是以提供适当的床下一次风量为目的,根据总风量按分配函数计算一次风量的预定值,引入床温信号的修正,与最小一次风量取大值(确保最低流化风量),作为一次风量的给定,与实际进入炉膛的一次风量的偏差,通过一次风量调节器运算生成控制信号,控制相应调节挡板的开度,使一次风量满足运行要求。
二次风量控制
二次风为床料提供燃尽风,主要承担调节烟气含氧量的任务,从不同高度送入还可均衡各段床温。根据总风量指令分配的二次风量(床上配风)指令,经烟气含氧量修正和床温控制校正信号修正,作为二次风量的给定值。通过PID调节回路,控制相应的二次风挡板开度使二次风量满足运行要求。
烟气含氧量调节器的输出作为二次风量(床上配风)指令的有限幅的修正系数,并设置手/自动切换接口。在正常运行时调整烟气含氧量为期望值,保证锅炉燃烧经济性;当氧量信号故障时也不会造成二次风量的大幅突变,有利于炉内流化稳定。
大中型CFB锅炉的二次风由单独配置的一台甚至两台二次风机提供。通过调节二次风机入口挡板或二次风机转速,控制二次风母管风压为需要值。
9 .汽包水位控制
该系统的目标是保证锅炉汽包中的水位稳定在安全运行的范围内,并实现汽包水位全程控制。
在启动和低负荷期间,由汽包水位单冲量调节回路控制启动给水调节阀开度,调整给水流量,实现汽包水位控制。在正常运行时,由汽包水位、主蒸汽流量和给水流量构成的三冲量调节回路控制主给水调节阀开度或给水泵转速,调整给水流量,实现汽包水位控制。
三冲量与单冲量调节间的自动切换过分配算法功能实现。
给水采用单冲量控制时,经压力补偿的汽包水位信号(三取中)作为水位调节器的反馈信号,与给定值的偏差通过比例积分运算,所得输出值控制启动给水调节阀开度,调整给水流量,维持水位在给定值。
给水采用串级三冲量控制时,经压力补偿的汽包水位信号(三取中)作为水位调节器(PI)的反馈信号,与水位给定值的偏差通过比例积分运算,再与主蒸汽流量(前馈)相加后作为主给水调节器(ID)的给定值。此给定值与作为反馈信号的主给水流量的偏差通过PID运算,所得输出值控制主给水调节阀开度或给水泵转速,调整给水流量,维持水位在给定值。
10 .炉膛压力控制
本控制回路是一个带前馈的单回路PID调节系统,控制引风机入口挡板开度或引风机转速,改变引风量,以维持炉膛压力的平衡。为减小动态偏差,引入送风(含一、二次风)执行机构位置(经适当加权运算后)作为前馈信号,可使引风机迅速响应总风量的变化,维持炉膛压力在设定值。
由于炉内床料存量随负荷而变化,从运行的经济性考虑,炉膛压力设定值随负荷变化应进行适当调整。
11 .回料器配风控制(返料风控制)
CFB锅炉最基本的工况之一就是要建立物料按照炉膛—分离器—回料器—炉膛的流程的单向循环。而回料器是这一循环中的关键部件,它是一个具有自密封特性的非机械式物料输送装置。通过对回料器下降段用风、底部用风和上升段用风的合理控制,实现回料器的畅通和物料单向输送,即单向返料。在回料器进口立管中的物料形成的静压与炉膛床压之间的差压是物料循环的根本动力。
回料器用风要求有较高压力。小容量CFB锅炉的回料器用风由一次风提供,回料器用风压力由一次风机保证。大中型CFB锅炉的回料器用风则由专门的罗茨风机(组)提供,回料器用风压力通过罗茨风机(组)出口母管至一次风管的旁路阀(溢流阀)来调节,该压力控制回路是一个单回路PID调节系统。在保证回料器用风压力足够的前提下,还需控制各段用风风量均达到相应的必须值,且各段风量应保持一定比例,才能保证物料的可靠循环。
12 .风道燃烧器控制
大多数CFB锅炉采用风道燃烧器完成点火启动。每台风道燃烧器装有一支油枪,布置有内通道风、外通道风和出口冷却风。内通道风和外通道风由一次风经点火风机增压后提供。内通道风为油枪提供稳燃风,外通道风为油枪提供燃尽风,出口冷却风调节风道燃烧器烟温。
风道燃烧器控制的任务是控制其出力并合理配置各部分风量,达到安全运行,快速点燃床料中的煤燃料,或稳定流化床燃烧的目的。
风道燃烧器的配风需要加以控制。根据油枪的流量计算出所需内、外通道风量,经PID调节控制相应挡板开度,保证油枪稳定和完全燃烧。出口烟温按单回路PID调节,通过控制出口冷却风挡板开度调整冷却风量稳定出口烟温,以避免烟温过高造成风道燃烧器内衬的保温材料坍塌甚至穿壁事故。
风道燃烧器的配风分三部分,第一部分为初始稳燃风,第二部分为燃烬风,第三部分为风道燃烧器出口调温风。其中第一、第二部分风量根据进油量按比例调节。第三部分风量根据风道燃烧器出口烟气温度调节,其目的是通过调整对应风门挡板控制风道燃烧器出口烟气温度维持在给定值。
13 .石灰石控制
石灰石量的给定值由石灰石量与煤量的比值(Ca/S)乘以给煤量得到预估值,再由SO 2调节器输出值作为修正系数与预估值相乘后获得。石灰石量给定值与测量值的偏差经调节器PI运算,其输出控制石灰石给料装置,从而改变石灰石量来保证烟气中SO 2排放量达到环保要求。另外石灰石颗粒的几何尺寸应严格控制,颗粒太大或太小都会降低整个脱硫效率,在运行过程中造成不良影响。
SO 2调节器输出设置手/自动切换和限值功能(如:0.8—1.2)。在SO 2调节回路投入自动运行时,回路可由SO 2调节器精确调整所需石灰石量,控制烟气中SO 2含量为给定值。当SO 2调节回路未处于自动状态时(如SO 2测量信号故障时回路退出自动),回路也可获得一个相对合适的石灰石量的给定值,进而给入相应的石灰石量。
这一回路结构还减小了尾部烟气中SO 2含量变化相对于给煤量变化的滞后对匹配石灰石量调节带来的延迟,提高了石灰石量调节的快速性。
石灰石由给料装置给出后,多数CFB锅炉采用高压空气通过管道完成其后续的输送任务。这种系统中,还需要控制高压输送空气的风压和风量,以保证石灰石颗粒被可靠输送到炉膛。
14 .暖风器控制
该控制系统用于控制末级空气预热器冷端温度,以保证这一温度高于烟气中硫酸露点,从而防止冷端金属腐蚀。在空气进入末级预热器前,调整进入暖风器的蒸汽量以保证进入空气预热器的风温度足够高,使得空气预热器冷端烟气温度高于酸露点。
本系统采用单回路PID调节,采用末级预热器空气入口风温和烟气温度的平均值为反馈值,通过控制加热蒸汽调节阀开度,调整加热蒸汽流量,维持末段空气预热器冷端烟气温度在安全范围。
15 .冷渣器控制
通过冷渣器内各床的床压和温度控制进入相应床内的风量,以保证排渣温度符合输渣系统的要求。
当冷渣器内某床的温度高于允许值时,开启相应冷却水阀,对该冷渣器进行强制冷却,直到床温恢复到正常值。
16 .高压加热器水位控制
本系统采用单回路PID调节,根据高压加热器水位控制疏水阀开度,调整疏水量,维持水位在正常范围。当高压加热器水位超过高限水位,应停运高压加热器。
17 .低压加热器水位控制
本系统采用单回路PID调节,根据高压加热器水位控制疏水阀开度,调整疏水量,维持水位在正常范围。
18 .凝汽器水位控制
本系统采用单回路PID调节,通过控制补给水调节阀开度,调整补给水流量,维持凝汽器水位在正常范围。
19 .除氧器压力控制
本系统采用单回路PID调节,通过控制加热蒸汽调节阀开度,调整加热蒸汽量,维持除氧器压力为给定值。
20 .除氧器水位控制
除氧器水位控制回路,在启动和低负荷时采用单冲量调节,正常负荷时采用三冲量调节,通过调节除氧器水位调节阀和凝结水再循环阀来维持水位,保持凝结水流量和给水流量的平衡。当水位高报警时,系统保护逻辑超驰控制凝结水再循环阀开,直至水位恢复正常。
21 .轴封压力控制
本系统采用单回路PID调节,在汽机启停时通过控制进汽调节阀开度,调整进汽流量,维持轴封压力在规定范围。
在汽机正常工作时通过控制排汽调节阀开度,调整排汽流量,维持轴封压力在规定范围。
22 .播煤风量控制
对每台气力播煤装置,通过给煤量按比例设定播煤风量给定值,测量值与给定值之差经PID运算,调整播煤风风门的开度,使播煤风量满足给煤要求。
23 .密封风压控制
本系统采用单回路PID调节,通过调节各密封风挡板开度,以维持密封风压在正常值。
4. 加热炉出口温度与炉膛温度串级控制系统
串级加热原理:
串级加热是两只调节器串联起来工作,其中一个调节器的输出作为另一个调节器的给定值的系统。串级加热主要应用于:对象的滞后和时间常数很大、干扰作用强而频繁、负荷变化大、对控制质量要求较高的场合。
串级加热结构上,它是由两个串接工作的控制器构成的双闭环控制系统。串级加热系统的目的在于通过设置副变量来提高对主变量的控制质量。串级加热由于副回路的存在,对进入副回路的干扰有超前控制的作用,因而减少了干扰对主变量的影响。串级加热系统对负荷改变时有一定的自适应能力。
串级加热组成结构工作过程特点及分析工程应用场合系统的设计,工业应用几种典型加热炉出口温度与炉膛温度串级控制系统。
串级加热采用两套检测变送器和两个调节器,前一个调节器的输出作为后一个调节器的设定,后一个调节器的输出送往调节阀。
串级加热前一个调节器称为主调节器,它所检测和控制的变量称主变量(主被控参数),即工艺控制指标。串级加热后一个调节器称为副调节器,它所检测和控制的变量称副变量(副被控参数),是为了稳定主变量而引入的辅助变量。
串级加热整个系统包括两个控制回路,主回路和副回路。副回路由副变量检测变送、副调节器、调节阀和副过程构成;主回路由主变量检测变送、主调节器、副调节器、调节阀、副过程和主过程构成。
串级加热作用在主被控过程上的,而不包括在副回路范围内的扰动。串级加热作用在副被控过程上的,即包括在副回路范围内的扰动。
5. 工业加热炉的串级控制系统的设计要求
荷和干扰变化比较平缓或者对被控变量要求不高的场合。
2、串级控制系统 包括主对象、主控制器、副回路等效环节和主变量测量变送器。
特点是对进入副回路的扰动具有较迅速、较强的克服能力;可以改善对象特性、提高工作频率;可消除调节阀等非线性的影响;具有一定的自适应能力。
适用于时间常数及纯滞后较大的被控对象,如加热炉的温度控制等。
3、比值控制系统 工业生产上为保持两种或两种以上物料比值为一定的控制叫比值控制。
常见的比值控制系统有单闭环比值、双闭环比值和串级比值三种。
单闭环比值控制系统特点:物料流量的比值较为精确,但当主流量出现大的扰动或负荷频繁波动时,副流量在调节过程中相对于控制器的给定值会出现比较大的偏差,不适用于需严格要求动态比值的化学反应。
双闭环比值控制系统特点:能克服单闭环的缺点,提降负荷比较方便。
6. 工业加热炉的串级控制系统的设计原理
串级控制系统主要应用于:对象的滞后和时间常数很大、干扰作用强而频繁、负荷变化大、对控制质量要求较高的场合。
基本信息
中文名
串级控制系统
条件
扰动发生,破坏了稳定状态
应用场合
容量滞后较大,纯时延较大的过程
介绍
串级控制系统
串级控制系统-----两只调节器串联起来工作,其中一个调节器的输出作为另一个调节器的给定值的系统。
例:加热炉出口温度与炉膛温度串级控制系统