返回首页

基于51单片机的数字频率测量仪例程(基于单片机的频率测量电路的设计)

来源:www.haichao.net  时间:2022-12-14 06:47   点击:63  编辑:admin   手机版

1. 基于单片机的频率测量电路的设计

本应用系统设计的目的是通过在“单片机原理及应用”课堂上学习的知识,以及查阅资料,培养一种自学的能力。

并且引导一种创新的思维,把学到的知识应用到日常生活当中。

在设计的过程中,不断的学习,思考和同学间的相互讨论,运用科学的分析问题的方法解决遇到的困难,掌握单片机系统一般的开发流程,学会对常见问题的处理方法,积累设计系统的经验,充分发挥教学与实践的结合。

全能提高个人系统开发的综合能力,开拓了思维,为今后能在相应工作岗位上的工作打下了坚实的基础。 1.1数字频率计概述 数字频率计是计算机、通讯设备、音频视频等科研生产领域不可缺少的测量仪器。

它是一种用十进制数字显示被测信号频率的数字测量仪器。

它的基本功能是测量正弦信号,方波信号及其他各种单位时间内变化的物理量。

在进行模拟、数字电路的设计、安装、调试过程中,由于其使用十进制数显示,测量迅速,精确度高,显示直观,经常要用到频率计。

本数字频率计将采用定时、计数的方法测量频率,采用一个1602A LCD显示器动态显示6位数。

测量范围从1Hz—10kHz的正弦波、方波、三角波,时基宽度为1us,10us,100us,1ms。用单片机实现自动测量功能。

基本设计原理是直接用十进制数字显示被测信号频率的一种测量装置。

它以测量周期的方法对正弦波、方波、三角波的频率进行自动的测量。 点击重新加载 1.2频率测量仪的设计思路与频率的计算 图1 频率测量原理图 频率测量仪的设计思路主要是:对信号分频,测量一个或几个被测量信号周期中已知标准频率信号的周期个数,进而测量出该信号频率的大小,其原理如右图1所示。

若被测量信号的周期为,分频数m1,分频后信号的周期为T,则:T=m1Tx 。由图可知: T=NTo (注:To为标准信号的周期,所以T为分频后信号的周期,则可以算出被测量信号的频率f。)

由于单片机系统的标准频率比较稳定,而是系统标准信号频率的误差,通常情况下很小;而系统的量化误差小于1,所以由式T=NTo可知,频率测量的误差主要取决于N值的大小,N值越大,误差越小,测量的精度越高。 1.3 基本设计原理 基本设计原理是直接用十进制数字显示被测信号频率的一种测量装置。

它以测量周期的方法对正弦波、方波、三角波的频率进行自动的测量。

所谓“频率”,就是周期性信号在单位时间(1s)内

2. 数字频率计51单片机设计程序

根据时钟频率,和定时器装人高8位,及低8位数字大小,来计算的,根据指令执行时间,来计算

3. 51单片机测量频率的程序

51单片机大多使用12M或11.0592M的晶振。时钟的频率是晶振频率的1/12,时钟频率也就是单片机的工作频率,所以12M晶振的51单片机的工作频率是1M,11.0592M的晶振的51单片机工作频率是0.9216M。

4. 基于51单片机的数字频率计

刚刚下了一楼传的附件,测试后发现精度和测量范围都比较差。

如果单从测频的角度来说,51的频率计是很简单的。

恰好几年前我写过类似的程序,是用来测频率和占空比的。 ????

?理论上单用C52这单片机测频率最高为:12M/12/2=500KHZ。

我写的这个程序可以同时测频率和脉宽,仿真下大概可以测到350KHZ;测脉宽好像10KHZ左右,再高的话脉宽的精度就会下降。

测频精度在100KHZ以内,基本是2HZ;200K是5HZ;350KHZ以内是10HZ;最低测量频率1HZ。???? ??

?仿真比较慢,数据要3秒后才会稳定,有兴趣的话自测吧。 ? 50KHZ测量 ? 100KHZ测量 ? 300KHZ测量 ?

5. 51单片机晶振频率

1. 时钟周期是机器周期的12倍 , 机器周期是晶振频率的倒数

2. 51单片机1个机器周期=12个时钟周期,频率为12MHZ,则一个机器周期为1US,具体到定时器程序就是,假如你想定1MS,那么单片机每次加一个一,就要过1US,那么1MS就要加1000次,所以用65535-1000=64535;再把64535换成16进制为FC17,把FC付给TH0,17给TLO,即可定时1MS,因为65535他就溢出进入中断。

3. 时钟周期又称为振荡周期,由单片机内部振荡电路OSC产生,定义为OSC时钟频率的倒数。时钟周期又称为节拍(用P表示)。时钟周期是时序中的最小单位。一个状态有两个节拍,

机器周期定义为实现特定功能所需的时间。MCS-51的机器周期由12个时钟周期构成。

执行一条指令所需要的时间称为指令周期,指令周期是时序中的最大单位。由于机器执行不同指令所需的时间不同,因此不同指令所包含的机器周期数也不尽相同。MCS-51的指令可能包括1~4个不等的机器周期。

当MCS-51的主频为12MHz时,一个机器周期为1us。执行一条指令需要的最长时间为4us。

6. 51单片机测量频率的方法

用单片机普通IO口采集外部信号的频率的方法:用TH0和TL0做计数器,再配合2个8位的软件计数器可以组成2个16位的计数器可以测2路频率,使用定时器1+软件计数器的方法定时1秒中,每当1秒到时,计数器中的值即是所测量的频率。单片机是一种集成电路芯片,是采用超大规模集成电路技术把具有数据处理能力的中央处理器CPU、随机存储器RAM、只读存储器ROM、多种I/O口和中断系统、定时器/计数器等功能(可能还包括显示驱动电路、脉宽调制电路、模拟多路转换器、A/D转换器等电路)集成到一块硅片上构成的一个小而完善的微型计算机系统,在工业控制领域广泛应用。

7. 频率测量仪 单片机

51单片机最快的时钟频率是晶振的频率,stm32系列的最快的时钟频率是内部总线的频率。

因为51是分频的,stm32是倍频的。

8. 51单片机频率计数器

一、STC51单片机外部引脚介绍

1、电源和时钟引脚。如Vcc、GND、XTAL1、XTAL2

2、编程控制引脚。如RST(复位)。

3、I/O口引脚。

Vcc、GND——单片机电源引脚,不同的型号单片机接入对应电压电源,常压为+5V,低压为+3.3V

XTAL1、XTAL2——外接时钟引脚。XTAL1为片内震荡电路的输入端,XTAL2为片内震荡电路的输出端。8051的时钟有两种方式,一种是片内时钟震荡方式,需要在这两个脚外接石英晶体和震荡电容,震荡电容的值一般取10p~30p;另一种是外部时钟方式,将XTAL1接地,外部时钟信号从XTAL2脚输入。

P0口——双向8位I/O口,每个口可独立控制,没有上拉电阻,为高阻态,所以不能正常的输出高低电平,因此该组IO口在使用时务必要接上拉电阻,一般选10千欧。

P1口——准双向8位IO口,每个口可独立控制,内带上拉电阻,这种接口输出没有高阻状态,输入也不能锁存,故不是真正的双向IO口。之所以称它为准双向,是因为该口在作为输入使用前,要先向该口进行写1操作,然后单片机内部才可正确的读出外部信号,也就是要使其先有个“准”备的过程,所以说才是准双向接口。

P3口——与P1口类似,作为第二功能使用时,和引脚有着各种功能的定义,要查手册。

二、电平特性

单片机的输入输出电平为TTL电平,其中高电平为+5V,低电平为0V。计算机串口为RS-232电平,其中高电平为-12V,低电平为+12V。注意,RS-232为负逻辑电平。

三、单片机的几个周期介绍

1、时钟周期:也称为震荡周期,定义为时钟频率的倒数(可以这样来理解,时钟周期就是单片机外接晶振的倒数,如12Mhz的晶振,它的时钟周期就是1/12us),它是单片机中最基本的、最小的时间单位。在一个时钟周期内,CPU仅完成这一个最基本的动作

2、状态周期:它是时钟周期的两倍

3、机器周期:单片机的基本操作周期,在一个操作周期内,单片机完成一项基本操作,如取指令、存储器读写等。它由12个时钟周期(6个状态周期)组成。

4、指令周期:他是指CPU执行一条指令所需要的时间。一般一个指令周期含有1~4个机器周期。

四、移位操作

1、左移。C51操作符为“<<”,最低位补零

2、右移。同上

3、循环左移,最高位移入最低位,其他依次向左移一位。

五、数码管显示原理

电路方面有共阴极和共阳极之分,让数码管显示不同的数字就是先定义一个保存16进制数的数组,然后在程序中把这个16进制数赋值给相应的引脚。

六、中断概念

1、51单片机一共有6个中断源

INT0——外部中断0

INT1——外部中断1

T0/1/2——计时器/定时器中断,由计数器满回零引起。

T1/R1——串行口中断,串行端完成一帧字符发送/接收后引起。

七、单片机的定时器中断

51单片机内部共有两个16位可编程的定时器/计数器,即定时器T0和定时器T1。它们既有定时功能又有计数功能。定时器/计数器的实质是加1计数器(16位),由高8位和底8位两个寄存器组成,TMOD寄存器是定时器/计数器的工作方式寄存器,确定工作方式和功能;TCON是控制寄存器,控制T0,T1的启动和停止以及设置溢出标志。

加一计数器的输入计数脉冲有两个来源,一个是由系统的时钟振荡器输出脉冲经12分频后送来;另一个是T0或T1引脚输入的外部脉冲源。如果定时器/计数器工作在定时模式,则表示时间已到;如果工作在计数模式,则表示计数值已经满了。

定时器初始化过程如下:

①对TMOD赋值,以确定T0和T1的工作方式

②计算初值,并将初值写入TH0、TL0或TH1、TL1中。

③中断方式时,则对IE赋值,开放中断。

④使TR0或TR1置位,启动定时器/计数器定时或计数

八、并行与串行基本通信方式

1、并行通信方式:将数据字节的各位用多条数据线同时进行传输,每位数据都需要一条传输线。

2、串行通信方式:串行通信是将数据字节分成一位一位的形式在一条传输线上逐个的传输,此时只需要一条数据线

3、异步串行通信方式:指通信的接收与发送设备使用各自的时钟控制数据的发送和接收过程。其特点是:不要求发送双方时钟严格一致,容易实现,设备开销小,但每个字符要附加2~3位,用于起始位、校验位、停止位,各帧之间还有间隔,因此传输效率不高。在单片机与单片机之间,单片机与计算机之间通信时,通常采用异步串行通信方式。

4、同步串行通信方式:同步通信时要建立发送方时钟对接收方时钟的直接控制,使双方完全达到同步。

九、RS-232电平与TTL电平的转换

一般使用MAX232实现电平转换

十、波特率与定时器初值的关系

1、波特率:单片机或计算机在串口通信时的速率用波特率表示,它定义为每秒传输二进制代码的位数,即1波特 = 1位/秒,单位是bps。

2、波特率的计算:在串行通信中,收、发双方对发送或接受数据的速率有约定。通过编程可对单片机串行口设定四种工作方式,其中方式0和方式2的波特率是固定的,而方式1和方式3的波特率是可变的,由定时器T1的溢出率来决定。

3、为什么51系列单片机常用11.0592MHz的晶振设计?常用波特率通常按规范取1200,2400,4800,9600···,若采用晶振12Mhz或6Mhz,计算得出的T1定时初值将不是一个整数,这样通信时便会产生积累误差。

十一、串行口结构描述

1、串行口结构:51单片机的串行口是一个可编程全双工的通信接口,具有UART(通用异步收发器)的全部功能,能同时进行数据的发送和接收。串行口主要由两个独立的串行数据缓冲寄存器SBUF(一个发送缓冲寄存器,一个接收缓冲寄存器)和发送控制器、接收控制器、输入移位寄存器以及若干控制门电路组成。执行写指令时,访问串行发送寄存器;执行读指令时,访问串行接收寄存器。与串口紧密相关的一个特殊功能寄存器是串行口控制寄存器SCON,它用来设定串行口的工作方式,接收/发送控制以及设置状态标志位等。

2、串口方式简介:重点介绍方式1:。方式1是十位数据的异步通信口,其中1为起始位,8为数据位,1位停止位。TXD为数据发送引脚,RXD为数据接收引脚。其传输的波特率是可变的,对于51单片机,波特率由定时器1的溢出率决定。通常在做单片机与单片机串口通信、单片机与计算机串口通信、计算机与计算机串口通信时,基本都选择方式1。

3、在具体操作串行口之前,需要对单片机的一些与串口有关的特殊功能寄存器进行初始化设置,主要是设置产生波特率的定时器1、串行口控制和中断控制。①确定T1工作方式(编程TMOD寄存器)②计算T1的初值,装载TH1,TL1③启动T1(编程TCON寄存器的TR1位)④确定串行口工作方式(编程SCON寄存器)⑤串行口工作在中断方式时,要进行中断设置(编程IE、IP寄存器)

十二、I2C总线概述

1、I2C具有接线口少,控制简单,器件封装形式小,通信速率高等优点。I2C总线由数据线SDA和时钟线SCL两条线构成通信线路,即可发送数据,也可接受数据。

2、单片机模拟I2C总线通信,因为有许多单片机没有I2C总线接口,如51单片机,不过我们可以在单片机应用系统中通过软件模拟I2C总线的工作时序,在使用时,只需要正确调用各个函数就能方便地扩展I2C总线接口器件。

3、单片机在模拟I2C通信时,需要写出如下几个关键部分的程序:总线的初始化、启动信号、应答信号、停止信号、写一个字节、读一个字节。

十三、单片机空闲与掉电模式

1、空闲模式:除CPU处于休眠状态之外,其余硬件全部处于活动状态。

2、掉电模式:也成为休眠模式,外部晶振停振,CPU,定时器、串行口全部停止工作,只有外部中断继续工作。

十四、看门狗概念

在由单片机构成的系统中,由于单片机的工作有可能受到外界电磁场的干扰,造成程序的跑飞,从而陷入死循环,程序的正常运行被打断,所以出于对单片机运行状态进行实时监测的考虑,便产生了一种专门用于监测单片机程序运行状态的芯片,俗称看门狗。

其工作过程如下:看门狗芯片和单片机的一个IO引脚相连,该IO引脚通过单片机程序控制,使他定时地往看门狗的这个引脚上送入高电平(或低电平),这一程序语句是分散的放在单片机其他控制语句中间的,一旦单片机由于干扰造成的程序跑飞而陷入某一程序段进入死循环状态时,给看门狗引脚送电平的程序便不能被执行到,这时看门狗电路会由于得不到单片机送来的信号,便对它与单片机复位引脚相连接的引脚送一个复位信号,使单片机复位。

十五、SPI接口

1. 概述

SPI = Serial Peripheral Interface,是串行外围设备接口,是一种高速,全双工,同步的通信总线。常规只占用四根线,节约了芯片管脚,PCB的布局省空间。现在越来越多的芯片集成了这种通信协议,常见的有EEPROM、FLASH、AD转换器等。

优点:

支持全双工,push-pull的驱动性能相比open-drain信号完整性更好;

支持高速(100MHz以上);

协议支持字长不限于8bits,可根据应用特点灵活选择消息字长;

硬件连接简单;

缺点:

相比IIC多两根线;

没有寻址机制,只能靠片选选择不同设备;

没有从设备接受ACK,主设备对于发送成功与否不得而知;

典型应用只支持单主控;

相比RS232 RS485和CAN总线,SPI传输距离短;

2. 硬件结构

SPI总线定义两个及以上设备间的数据通信,提供时钟的设备为主设备Master,接收时钟的设备为从设备Slave;

信号定义如下:

SCK : Serial Clock 串行时钟

MOSI : Master Output, Slave Input 主发从收信号

MISO : Master Input, Slave Output 主收从发信号

SS/CS : Slave Select 片选信号

9. 频率测量实验 单片机

      在停车场系统中,要确定地感线圈的作用首先我们得知道地感线圈安装的位置,地感线圈一般装在以下2个位置:入出口道闸处各一个。

      停车场系统里“地感线圈”就是一个振荡电路。它是这样构成的,在地面上先造出一个圆形的沟槽,直径大概1米,或是面积相当的矩形沟槽,再在这个沟槽中埋入两到三匝导线,这就构成了一个埋于地表的电感线圈,这个线圈是一个振荡电路的一部分,由它和电容组成振荡电路,其原则是振荡稳定可靠,这个振荡信号通过变换送到单片机组成的频率测量电路,单片机就可以测量这个振荡器的频率了。

10. 51单片机的时钟频率为11.0592MHz

晶振的振荡频率,要根据单片机的具体应用场合来决定,并不是越高越好。 11.0592MHz和12MHz的振荡频率相差不大,但如果你的单片机需要用异步串行通信功能的话,建议你选用11.0592MHz的振荡频率。

因为你在进行波特率发生器的编程中,采用这个振荡频率的话,波特率计数器的计数初值可以是整数;而采用12MHz振荡频率,则计数初值只能是一个大约值(接近于某个小数的整数),长时间通信会产生误差积累而导致通信失败。

顶一下
(0)
0%
踩一下
(0)
0%